deepFM model

该博客介绍了如何使用PyTorch实现DeepFM模型,该模型结合了因子分解机(FM)和深度神经网络(DNN),用于推荐系统的二分类任务。博主首先介绍了数据预处理步骤,然后详细讲解了模型的构建,包括FM层和DNN层的搭建,以及训练和验证过程。最后,通过绘制损失函数和AUC曲线展示了模型的训练效果。
摘要由CSDN通过智能技术生成
# ========================================================================
主要知识点:
1.  torch-> torch.data(DataLoader,Dataset, TensorDataset<切分完训练测试集后,合并特征和标签,组成一组数据)
    -> torch.nn -> F, optim -> summary, Model -> roc_auc_score

2.  trn_x, trn_y = train.drop(columns='Label').values, train['Label'].values
    TensorDataset<切分完训练测试集后,合并特征和标签,组成一组数据

3.  dl_train = DataLoader(dl_train_dataset, shuffle=True, batch_size=32)

4.  可学习参数,需要用nn.Parameter进行定义
    self.w2 = nn.Parameter(torch.rand([fea_num, latent_dim]))

5.  self.dnn_network = nn.ModuleList([nn.Linear(layer[0], layer[1]) 
            for layer in list(zip(hidden_units[:-1],hidden_units[1:]))])

6.  for linear in self.dnn_network:
            x = linear(x)
            x = F.relu(x)
        x = self.dropout(x)

7.  loss_func = nn.BCELoss()
    optimizer = optim.Adam(params=model.parameters(), lr=0.001)

8.  self.embed_layers = nn.ModuleDict({
            'embed_' + str(i):nn.Embedding(num_embeddings=feat['feat_num'],embedding_dim=feat['embed_dim'])
            for i, feat in enumerate(self.sparse_feature_cols)
        })  # 每个离散特征单独embedding

# ========================================================================
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from tqdm import tqdm

import torch
from torch.utils.data import DataLoader, Dataset, TensorDataset
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

from torchkeras import summary, Model
from sklearn.metrics import roc_auc_score

import datetime
import warnings
warnings.filterwarnings('ignore')

file_path = 'T:\\FutureAi\\深度学习概念思维导图\\AI-RecommenderSystem-master\\DeepFM\\data\\'

def prepared_data(file_path):
    train = pd.read_csv(file_path + 'train_set.csv')
    val = pd.read_csv(file_path + 'val_set.csv')
    test = pd.read_csv(file_path + 'test_set.csv')

    trn_x, trn_y = train.drop(columns='Label').values, train['Label'].values
    val_x, val_y = val.drop(columns='Label').values, val['Label'].values
    test_x = test.values

    fea_col = np.load(file_path + 'fea_col.npy',allow_pickle=True)
    return fea_col, (trn_x, trn_y),(val_x, val_y), test_x

fea_cols, (trn_x, trn_y), (val_x, val_y), test_x = prepared_data(file_path)

dl_train_dataset = TensorDataset(torch.tensor(trn_x).float(), torch.tensor(trn_y).float())
dl_val_dataset = TensorDataset(torch.tensor(val_x).float(), torch.tensor(val_y).float())

dl_train = DataLoader(dl_train_dataset, shuffle=True, batch_size=8)
dl_val = DataLoader(dl_val_dataset, shuffle=True, batch_size=8)

dl_train
len(dl_train)

for x, y in iter(dl_train):
    print(x.shape, y)
    break


class FM(nn.Module):
    def __init__(self, latent_dim, fea_num):
        super(FM, self).__init__()
        self.latent_dim = latent_dim

        self.w0 = nn.Parameter(torch.zeros([1,]))
        self.w1 = nn.Parameter(torch.rand([fea_num, 1]))
        self.w2 = nn.Parameter(torch.rand([fea_num, latent_dim]))

    def forward(self, inputs):
        first_order = self.w0 + torch.mm(inputs, self.w1)
        second_order = 1/2 * torch.sum(torch.pow(torch.mm(inputs, self.w2),2) 
                            - torch.mm(torch.pow(inputs,2), torch.pow(self.w2, 2)),
                            dim=1,
                            keepdim=True)
        return first_order + second_order

class Dnn(nn.Module):
    def __init__(self, hidden_units, dropout=0.):
        super(Dnn, self).__init__()
        self.dnn_network = nn.ModuleList(
            [nn.Linear(layer[0], layer[1]) for layer in list(zip(hidden_units[:-1],hidden_units[1:]))])
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        for linear in self.dnn_network:
            x = linear(x)
            x = F.relu(x)
        x = self.dropout(x)
        return x

class DeepFM(nn.Module):
    def __init__(self, feature_columns, hidden_units, dnn_dropout=0.):
        super(DeepFM, self).__init__()
        self.dense_feature_cols, self.sparse_feature_cols = feature_columns

        self.embed_layers = nn.ModuleDict({
            'embed_' + str(i):nn.Embedding(num_embeddings=feat['feat_num'],embedding_dim=feat['embed_dim'])
            for i, feat in enumerate(self.sparse_feature_cols)
        })

        self.fea_num = len(self.dense_feature_cols) + len(self.sparse_feature_cols) * self.sparse_feature_cols[0]['embed_dim']
        hidden_units.insert(0, self.fea_num)

        self.fm = FM(self.sparse_feature_cols[0]['embed_dim'], self.fea_num)
        self.dnn_network = Dnn(hidden_units, dnn_dropout)
        self.nn_final_linear = nn.Linear(hidden_units[-1], 1)

    def forward(self, x):
        dense_len = len(self.dense_feature_cols)
        dense_inputs, sparse_inputs = x[:, :dense_len], x[:, dense_len:]
        sparse_inputs = sparse_inputs.long()

        sparse_embeds = [self.embed_layers['embed_' + str(i)](sparse_inputs[:, i]) for i in range(sparse_inputs.shape[1])]
        sparse_embeds = torch.cat(sparse_embeds, dim=-1)

        x = torch.cat([sparse_embeds, dense_inputs], dim=-1)
        wide_outputs = self.fm(x)
        deep_outputs = self.nn_final_linear(self.dnn_network(x))

        outputs = F.sigmoid(torch.add(wide_outputs, deep_outputs))
        outputs = outputs.squeeze(-1)
        return outputs

hidden_units = [128,64, 32]

dnn_dropout = 0
model = DeepFM(fea_cols, hidden_units, dnn_dropout)
summary(model, input_shape=(trn_x.shape[1],))

for fea, label in iter(dl_train):
    out = model(fea)
    print(out)
    break


def auc(y_pred, y_true):
    pred = y_pred.data
    y = y_true.data
    return roc_auc_score(y, pred)

loss_func = nn.BCELoss()
optimizer = optim.Adam(params=model.parameters(), lr=0.001)
metric_func = auc
metric_name = 'auc'

%time
epochs = 100
log_step_freq = 10
dfhistory = pd.DataFrame(columns=['epoch', 'loss', metric_name, 'val_loss','val_' + metric_name])
print('start_training....')
nowtime = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
print('=========='*8 + '%s'%nowtime)

for epoch in range(1, epochs + 1):
    model.train()
    loss_sum = 0.0
    metric_sum  = 0.0
    step = 1

    for step, (features, labels) in enumerate(dl_train,1):
        optimizer.zero_grad()

        predictions = model(features)
        loss = loss_func(predictions, labels)
        try:
            metric = metric_func(predictions, labels)
        except ValueError:
            pass

        loss.backward()
        optimizer.step()

        loss_sum += loss.item()
        metric_sum += metric.item()
        if step % log_step_freq ==0:
            print(('[step=%d] loss:%.3f, ' + metric_name + ': %.3f') %(step, loss_sum/step, metric_sum/step))


    model.eval()
    val_loss_sum = 0.0
    val_metric_sum = 0.0
    val_step = 1

    for val_step, (features, labels) in enumerate(dl_val, 1):
        with torch.no_grad():
            predictions = model(features)
            val_loss = loss_func(predictions, labels)
            try:
                val_metric = metric_func(predictions, labels)
            except ValueError:
                pass

        val_loss_sum += val_loss.item()
        val_metric_sum += val_metric.item()

    info = (epoch, loss_sum/step, metric_sum/step, val_loss_sum/val_step, val_metric_sum/val_step)
    dfhistory.loc[epoch - 1] = info

    print(('\nEpoch=%d, loss=%.3f, ' + metric_name + ' =%.3f, val_loss=%.3f, ' + "val_" + metric_name + " =%.3f")%info)
    nowtime = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')   
    print('\n' + '===='*8 + '%s' %nowtime)
print('Finished Training')
dfhistory


def plot_metric(dfhistory, metric):
    train_metrics = dfhistory[metric]
    val_metrics = dfhistory['val_' + metric]
    epochs = range(1, len(train_metrics) + 1)
    plt.plot(epochs, train_metrics, 'bo--')
    plt.plot(epochs, val_metrics, 'ro-')
    plt.title('Training and validation' + metric)
    plt.xlabel('Epochs')
    plt.ylabel(metric)
    plt.legend(['train_' + metric, 'val_' + metric])
    plt.show()

plot_metric(dfhistory, 'loss')
plot_metric(dfhistory, 'auc')
DeepFM模型是一种结合了深度学习和传统的因子分解机(Factorization Machines, FMs)的推荐系统模型。它通过深度神经网络来学习特征的高阶交叉组合,同时保留了FM的线性部分,以此来捕捉特征的低阶交互。保存DeepFM模型通常包括保存模型的参数、结构以及训练过程中的状态信息,以便之后能够进行模型的加载和预测。在实际操作中,可以使用各种深度学习框架(例如TensorFlow或PyTorch)提供的模型保存和加载机制来实现这一点。 以TensorFlow为例,你可以使用`tf.train.Checkpoint`和`tf.train.CheckpointManager`来保存和管理模型的训练状态。以下是一个简单的保存流程示例: 1. 导入需要的模块: ```python import tensorflow as tf ``` 2. 定义模型结构: ```python class DeepFMModel(tf.keras.Model): # 定义DeepFM模型的结构 pass ``` 3. 创建模型实例和Checkpoint: ```python model = DeepFMModel(...) ckpt = tf.train.Checkpoint(step=tf.Variable(1), optimizer=model.optimizer, net=model) manager = tf.train.CheckpointManager(ckpt, './tf_ckpts', max_to_keep=3) ``` 4. 训练模型,并在适当的时候保存状态: ```python for example in data_loader: loss = model.train_step(example) ckpt.step.assign_add(1) if int(ckpt.step) % save_every == 0: save_path = manager.save() print(f'Saved checkpoint for step {int(ckpt.step)}: {save_path}') ``` 加载模型时,可以使用以下代码: ```python restored_model = DeepFMModel(...) ckpt.restore(manager.latest_checkpoint) if manager.latest_checkpoint: print(f'Restored from {manager.latest_checkpoint}') else: print('Initializing from scratch.') ``` 确保在保存和加载模型时,模型的结构、输入数据的预处理方式等都保持一致,以保证模型的正确加载和使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值