前言
随着自然语言处理(NLP)技术的不断进步,将自然语言转化为SQL查询语句的能力逐渐成为现实,这为非技术人员直接与数据库进行交互提供了可能。Text2SQL作为一个新兴的研究领域和技术应用,旨在通过解析用户输入的自然语言问题,并将其转换成相应的SQL查询语句,从而实现对数据库的智能查询。
本博客将深入探讨Text2SQL连接数据库的实践细节,涵盖从自然语言查询内容的解析到最终查询结果展示的整个流程。我们将详细介绍如何统计数据查询,包括涉及的数据库及表范围划定、权限设置、防护栏语句设定等重要环节;同时,我们也会关注数仓对接过程中的关键步骤,如确认数据仓库类型、准备数据库表结构、索引、视图等,以及确保安全和性能优化的措施。此外,为了提升用户体验,博客还将介绍推荐问题、问题追问机制的设计,以及提示语的实践。
Text2SQL(NL2sql)对话数据库:设计、实现细节与挑战
深入了解Text2SQL开源项目(Chat2DB、SQL Chat 、Wren AI 、Vanna)
以上两篇文章有助于你更好地理解Text2SQL。
1.解析自然语言查询内容
解析自然语言查询内容是Text2SQL系统的核心功能之一。这一过程涉及到将用户的自然语言问题转化为结构化的SQL查询语句。为了实现这一点,通常需要以下几步:
- 分词和词性标注:首先对用户输入的文本进行分词,并为每个词标注其词性(名词、动词等),以便理解句子的语法结构。
- 命名实体识别(NER):识别出句子中的特定实体,如人名、地名、日期等,这些信息对于构建准确的SQL查询至关重要。
- 依存关系分析:分析词语之间的依存关系,以确定它们在句子中的角色和相互作用,这对于正确理解和转换复杂的查询尤其重要。
- 意图识别:理解用户查询背后的意图,例如查询数据、更新记录或删除条目等。
- 槽位填充:根据意图识别的结果,填充预定义的查询模板中的变量,生成初步的SQL语句框架。
通过结合使用深度学习模型(如BERT、GPT系列)和传统NLP技术,可以显著提高自然语言解析的准确性,使得Text2SQL系统能够更有效地处理各种类型的查询请求。
当然这些功能都可以直接使用LLM进行实现。只需要提供适当的信息,大模型就可以做出处理结果。在下面的提示语设计内容中会详细的描述。
2.统计数据查询
涉及数据库及表范围划定、权限设置、防护栏语句设定。
确定哪些数据库和表格应该被纳入查询范围内,这取决于具体的应用场景和业务需求。对于大型数据库,合理的表范围划定可以帮助减少查询时间并降低系统负载。设立严格的访问控制机制,确保只有授权用户才能执行特定类型的查询。使用角色基础的访问控制来简化权限管理,同时增强安全性。
数仓对接
- 多数据源支持:设计系统时应考虑对多种数据仓库的支持,如Hive、Redshift、BigQuery等,包括关系型数据库(MySQL, PostgreSQL)和NoSQL数据库(MongoDB, Cassandra)。这可以通过使用抽象层或连接器框架来实现,比如Apache Calcite或JDBC/ODBC驱动。当然现在厂商多倾向于国产数据库,例如:华为Gauss DB、蚂蚁OceanBase、武汉达梦DM、南大通用GBase等。
- 动态适配:创建一个配置管理系统,允许用户在不修改代码的情况下切换数据源类型或版本。
- 元数据管理:建立一个元数据存储库来记录所有数据源的信息需要先前记录好,进行解析自然语言查询内容后连接指定的数据源。
- 数据库准备:优化数据库表结构(表结构内容要详细,包含表名、列名的注释和描述及一些枚举列的内容),创建必要的索引和视图以加速查询。
DDL示例:
CREATE TABLE `A101_JGXXB` (
`ID` varchar(32) NOT NULL COMMENT '主键ID',
`VERIFY_STATUS` varchar(1) NOT NULL COMMENT '校验状态(0-未校验1-校验成功2-校验失败)',
`ORG_ID` varchar(30) NOT NULL COMMENT '数据机构',
`DATA_DATE` varchar(8) NOT NULL COMMENT '数据日期',
`YHJGDM` varchar(30) DEFAULT NULL COMMENT '银行机构代码',
`NBJGH` varchar(30) DEFAULT NULL COMMENT '内部机构号',
`JRXKZH` varchar(30) DEFAULT NULL COMMENT '金融许可证号',
`YYZZH` varchar(60) DEFAULT NULL COMMENT '营业执照号',
`YHJGMC` varchar(450) DEFAULT NULL COMMENT '银行机构名称',
`JGLB` varchar(30) DEFAULT NULL COMMENT '机构类别',
`XZQHDM` varchar(6) DEFAULT NULL COMMENT '行政区划代码',
`YYZT` varchar(6) DEFAULT NULL COMMENT '营业状态',
`CLRQ` varchar(8) DEFAULT NULL COMMENT '成立日期',
`JGDZ` varchar(600) DEFAULT NULL COMMENT '机构地址',
`JGLXDH` varchar(30) DEFAULT NULL COMMENT '机构联系电话',
`FZRXM` varchar(150) DEFAULT NULL COMMENT '负责人姓名',
`FZRZW` varchar(150) DEFAULT NULL COMMENT '负责人职务',
`FZRLXDH` varchar(30) DEFAULT NULL COMMENT '负责人联系电话',
`BBZ` varchar(600) DEFAULT NULL COMMENT '备注',
`CJRQ` varchar(8) DEFAULT NULL COMMENT '采集日期',
`DATA_SOURCE` varchar(3) NOT NULL COMMENT '数据来源',
`CREATE_USER` varchar(50) DEFAULT NULL COMMENT '创建者',
`CREATE_TIME` varchar(20) DEFAULT NULL COMMENT '创建时间',
`UPDATE_USER` varchar(20) DEFAULT NULL COMMENT '修改者',
`UPDATE_TIME` varchar(20) DEFAULT NULL COMMENT '修改时间',
`GSFZJG` varchar(200) DEFAULT NULL COMMENT '归属分支机构',
PRIMARY KEY (`ID`),
UNIQUE KEY `A101_JGXXB_PK` (`ID`),
UNIQUE KEY `A101_JGXXB_UK` (`NBJGH`,`CJRQ`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci COMMENT='A101_机构信息表';
- 用户角色及权限划分:基于最小权限原则分配权限,确保安全的同时不影响功能性。例如可设定角色(管理员、查询用户、核心成员)。
yaml示例:
# 用户角色及权限划分配置文件
database_permissions:
- role: "管理员"
databases:
- name: "admin_db"
type: "PostgreSQL"
tables: ["*"] # 管理员可以访问所有表
- role: "查询用户"
databases:
- name: "reporting_db"
type: "MySQL"
tables: ["sales", "marketing"]
- role: "核心成员"
databases:
- name: "core_db"
type: "MongoDB"
tables: ["users", "products"]
- name: "analytics_db"
type: "Redshift"
tables: ["monthly_reports"]
# 每个角色只能访问其被明确授权的数据库和表。
# 星号(*)表示该角色具有对指定数据库下所有表的访问权限。
# 如果有更细粒度的权限控制(如仅允许读取或写入),可以在tables列表项中添加更多属性来描述。
-
安全审计功能:启用日志记录和监控,便于追踪异常活动。(当然这是在整个系统代码中都需要的内容)
-
SQL语句校验:实施静态分析工具检查SQL语句的正确性和安全性能。不允许的操作要禁止掉,以及查询表名要在权限范围内。
python代码示例:
import re
# 定义不允许的操作
DISALLOWED_OPERATIONS = [
'insert', 'update', 'delete', 'drop', 'alter', 'truncate',
'grant', 'revoke', 'create user', 'create database', 'drop database',
'create table', 'drop table', 'create index', 'drop index',
'alter session', 'execute procedure', 'call', 'load data infile',
'import', 'export'
]
# 定义允许的表名(转换为小写以便比较)
ALLOWED_TABLES = ['grxdfhz'] # 注意这里我使用了小写
def is_sql_safe(sql):
# 将SQL语句转换为小写以便检查不允许的操作和表名
sql_lower = sql.lower()
# 检查是否包含不允许的操作
for operation in DISALLOWED_OPERATIONS:
if re.search(r'\b' + operation + r'\b', sql_lower):
print(f"SQL语句包含不允许的操作: {operation}")
return False
# 提取SQL语句中的所有表名,并转换为小写以便比较
tables = re.findall(r'from\s+(\w+)|join\s+(\w+)|update\s+(\w+)|into\s+(\w+)', sql_lower)
tables = [table.lower() for table_group in tables for table in table_group if table]
# 检查是否有不允许的表名
for table in tables:
if table not in ALLOWED_TABLES:
print(f"SQL语句涉及不允许的表: {table}")
return False
return True
# 示例SQL语句
sql = "SELECT * FROM GRXDFHZ WHERE column1 = 'value';"
result = is_sql_safe(sql)
if result:
print("SQL语句是安全的。")
else:
print("SQL语句不安全。")
3.建立知识库
建立知识库用于记录和检索问题及对应的sql结果、数据库中表的DDL、专业的问题知识。这些信息将被转化为向量形式(即进行Embedding),并存储在专门的向量库中。这些向量表示使得系统能够高效地理解和检索结构化数据的相关信息。提出一个问题时,系统会在向量库中搜索与该问题最相关的信息。检索到的相关信息会被传递给大型语言模型,它根据上下文生成适当的SQL查询。
- 问题及对应的sql结果:根据数据库类别记录在知识库中,便于快速的分类检索。
- 数据库中表的DDL:内容详细且按照数据库类别记录。
- 专业的问题知识:记录行业的专业知识,例如专业的术语,指定的口语化说辞意图等。
知识库:用于记录和检索问题及其对应的SQL结果、数据库中表的DDL(数据定义语言)、以及专业的问题知识。这些信息对于系统的训练和优化至关重要。
向量数据库:使用向量表示(Embedding)技术将文本转化为向量形式,并存储在专门的向量库中。这使得系统能够基于相似性搜索来高效理解和检索结构化数据的相关信息。
大型语言模型(LLM):作为查询生成的核心组件,根据用户输入和知识库提供的信息,LLM负责生成最终的SQL查询语句。
向量数据库的选择
选择合适的向量数据库是实现上述架构的关键步骤之一。以下是一些流行的向量数据库及其特点:
Azure Search: 适用于需要集成微软生态系统的企业,提供强大的AI功能支持。
OpenSearch: 对于已经在AWS云服务上的应用,这是一个理想的开源解决方案。
PgVector: 如果您正在使用PostgreSQL,这个扩展可以让您轻松添加向量搜索能力。
Pinecone: 提供托管服务,适合希望减少运维负担的团队,专注于机器学习优化。
ChromaDB: 针对嵌入式应用场景设计,强调简单性和高性能。
FAISS: Meta开发的大规模相似性搜索引擎,特别适合处理海量数据集。
Marqo: 基于TensorFlow和PyTorch构建,面向神经搜索的应用场景。
Milvus: 开源且灵活,支持多种索引结构,适用于广泛的矢量相似性搜索任务。
Qdrant: 分布式部署的支持使其成为大规模应用的理想选择。
Weaviate: 结合了图数据库特性和内置向量索引,非常适合语义搜索和机器学习工作流。
知识库的功能
知识库不仅是智能SQL查询助手的心脏,还应该具备如下功能:
- 分类管理:按照数据库名称、类别等维度组织和管理知识内容。
- CRUD操作:支持知识条目的创建、读取、更新和删除。
- 检索功能:通过关键词或复杂查询条件快速找到所需信息。
- 导出数据:允许用户以指定格式下载知识库中的内容。
工作流程
当用户提出一个问题时,系统的工作流程如下:
- 用户输入自然语言问题。
- 系统解析问题并将其转换为向量表示。
- 在向量数据库中执行相似性搜索,找到最相关的知识条目。
- 将匹配的知识传递给LLM,帮助其理解背景信息。
- LLM根据上下文生成精确的SQL查询语句。
- 执行SQL查询并返回结果给用户。
4.推荐问题
推荐问题是提升Text2SQL系统智能化水平的关键特性之一。它可以帮助新手用户更快地上手,并引导他们提出更精确的问题。实现有效的推荐问题功能通常需要以下几个步骤:
- 基于历史记录分析:通过分析过往相似用户的查询行为,预测当前用户可能感兴趣的问题。从系统日志中提取用户的查询历史,包括成功的查询和失败的尝试。
- 进行标签化:为每个查询添加适当的标签,比如查询类型(SELECT, INSERT, UPDATE等)、涉及的表、字段以及任何特定条件。使用文本相似度算法来找到与当前用户输入最接近的历史查询。
- 结合上下文信息:考虑到当前会话中的对话内容和其他上下文因素(如地理位置、时间戳),为用户提供个性化的建议。
- 利用深度学习模型:训练专门的算法来识别潜在的相关问题,并不断改进推荐效果。
- 反馈机制:建立用户反馈渠道,允许用户对推荐的问题给出正面或负面的反馈。收集关于推荐问题有效性的意见,从而持续优化推荐策略。
5.问题追问
问题追问机制旨在模拟人类对话过程中的自然交流方式,使系统能够在初次查询后继续与用户互动,获取更多细节,以便更准确地理解意图并提供更加贴切的答案。具体来说:
智能提示:当检测到用户输入的信息不够明确时,主动询问进一步澄清的问题。
逐步深入:随着对话的进行,逐渐缩小讨论范围,直至完全弄清楚用户的实际需求。
多轮对话支持:设计支持多轮对话的能力,确保即使经过多次交流也能保持一致性。
结合大型语言模型(LLM, Large Language Model)的多轮问答功能,可以极大地增强Text2SQL系统的智能化和用户体验。通过多轮对话,系统不仅能更好地理解用户的意图,还能逐步引导用户更精确地表达需求,从而生成更准确的SQL查询。以下是具体如何实现这一点的方法:
- 多轮对话管理
对话状态跟踪:利用对话管理器来跟踪每一轮对话的状态,包括已知信息、未解决的问题以及用户的偏好。
上下文保持:确保每次交互都能记住之前的对话内容,这样即使在多次提问后也能维持一致性。 - 动态问题澄清
智能提问:当检测到模糊或不完整的输入时,主动向用户提出澄清性问题,以获取更多细节。
逐步细化:根据用户的回答,逐渐缩小搜索范围,最终确定最符合用户意图的SQL查询。 - 集成LLM进行推理
语义解析:使用LLM对自然语言描述进行深层次的理解,超越关键词匹配,真正捕捉到用户想要表达的意思。
逻辑推断:基于累积的知识库和先前的对话记录,做出合理的假设和推断,辅助构建复杂的查询条件。 - 自适应学习与个性化
行为分析:通过观察用户的行为模式,如常用词汇、习惯用语等,为每个用户提供定制化的服务。
持续优化:随着更多的互动积累,不断调整推荐策略,使其更加贴合特定用户群体的需求。 - 实现示例流程
初始请求:用户输入一个大致的问题或者命令。
初步解析:系统尝试理解并转换为SQL查询;如果存在不确定性,则进入下一步。
澄清阶段:系统向用户询问一些额外的信息,比如指定时间范围、排序方式等。
更新查询:根据收到的回答修改原来的查询草案。
执行查询:一旦获得足够的信息,就执行最终版本的SQL查询,并返回结果给用户。
反馈收集:邀请用户提供关于整个过程的意见,以便进一步改进系统。
6.提示语设计
优秀的提示语设计可以使用户更容易与Text2SQL系统进行沟通,降低使用门槛。以下是几个关键点:
简洁明了:用最简短的语言表达清楚的意思,避免冗长复杂的句子结构。
指导性强:给出具体的指示或例子,帮助查询。
动态适应:根据对话进程实时调整提示内容,使其始终贴合当前情境。
提示语示例:
请根据以下表结构生成MySQL 8支持的查询语句来回答用户的问题。#MySQL 8 可修改为指定类型
表结构:{知识库中检索的DDL}
问题:{question}
示例:{知识库中检索的相似问题示例}
输出要求:
**中文别名**:对于所有非中文列名,必须赋予直观且准确的中文别名。别名应能清晰表达列的实际意义。
**日期时间格式**:确保所有日期字段使用YYYYMMDD格式,时间字段使用hhmmss格式。
**无注释**:生成的SQL语句中不应包含任何类型的注释。
**忽略示例注释**:字段名为“COMMENT”的内容仅为示例注释,不应被视为实际数据库中的列。
请严格按照上述规则构造SQL查询语句。若任一条件无法满足或对用户问题理解不清,请返回空字符串。
7.查询结果展示
查询结果的展示是用户体验的重要组成部分,直接影响用户对系统满意度。一个良好的结果展示界面应当具备以下特点:
- 清晰易读:确保查询结果以直观、易于理解的方式呈现给用户,如表格、图表或列表等形式。
- 交互性强:提供排序、筛选、分页等功能,让用户可以方便地浏览和探索数据。
- 上下文关联:当显示查询结果时,尽可能提供与之相关的背景信息,帮助用户更好地解读数据。
- 响应迅速:优化前端性能,保证查询结果能够快速加载,减少等待时间。
数据可视化
对于统计数据查询而言,除了传统的文本形式外,还可以考虑采用图形化的方式来表示数据,比如柱状图、饼图、折线图等。这些视觉元素不仅使得复杂的数据更容易被理解,而且还能揭示出隐藏在数字背后的趋势和模式。
自定义视图
允许用户根据个人偏好定制查询结果的展示方式,包括选择显示哪些字段、调整列顺序、设置默认排序规则等。这有助于提高工作效率,满足不同用户的特定需求。