【工程实践】CatBoost进行多分类

前言

        工作中有业务涉及到机器学习模型,以CatBoost为例记录学习流程。

1.CatBoost简介

        CatBoost是俄罗斯的搜索巨头Y andex在2017年开源的机器学习库,和lightgbm、xgboost并成为gbdt三大主流神器库,它是一种基于对称决策树(oblivious trees)算法的参数少、支持类别型变量和高准确性的GBDT框架,主要说解决的痛点是高效合理地处理类别型特征,另外提出了新的方法来处理梯度偏差(Gradient bias)以及预测偏移(Prediction shift)问题,提高算法的准确性和泛化能力。

2.使用CatBoost进行多分类

2.1 引入库

import os
import pandas as pd
import numpy as np
import catboost
from catboost.datasets import amazon
from catboost import CatBoostClassifier
from catboost import Pool
from sklearn.model_selection import train_test_split
from tqdm import tqdm
from sklearn.metrics import accuracy_score,f1_score

2.2 数据处理

def GetNewDataByPandas(data_file):
    data = pd.read_csv(data_file)
    data = data.dropna()  #将所有含空缺值的行都删除
    print(data.keys())
    y = np.array(data["pkg_label"],dtype=np.int64)
    x = np.array(data.drop("pkg_label", axis=1),dtype=np.int64)
    return x, y

2.3 划分数据集

# 划分训练集和测试集
x, y = GetNewDataByPandas(DATASET_FILE)
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.1)

2.4 设定cat_features

cat_features = list(range(0,x_test.shape[-1]))
print(cat_features)
#[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

2.5 设定params

params={
    'classes_count':3,
    #'auto_class_weights' :'Balanced',
    #'task_type': 'GPU',
    #'devices': '0:1',
    'loss_function': 'MultiClassOneVsAll', # 损失函数,取值RMSE, Logloss, MAE, CrossEntropy, Quantile, LogLinQuantile, Multiclass, MultiClassOneVsAll, MAPE, Poisson。默认Logloss。
    #'custom_loss': 'Logloss', # 训练过程中计算显示的损失函数,取值Logloss、CrossEntropy、Precision、Recall、F、F1、BalancedAccuracy、AUC等等
    'eval_metric': 'AUC', # 用于过度拟合检测和最佳模型选择的指标,取值范围同custom_loss
    'iterations': 10, # 最大迭代次数,默认500. 别名:num_boost_round, n_estimators, num_trees
    'learning_rate': 0.1, # 学习速率,默认0.03 别名:eta
    'random_seed': 123, # 训练的随机种子,别名:random_state
    'l2_leaf_reg': 5, # l2正则项,别名:reg_lambda
    'bootstrap_type': 'Bernoulli', # 确定抽样时的样本权重,取值Bayesian、Bernoulli(伯努利实验)、MVS(仅支持cpu)、Poisson(仅支持gpu)、No(取值为No时,每棵树为简单随机抽样);默认值GPU下为Bayesian、CPU下为MVS
#   'bagging_temperature': 0,  # bootstrap_type=Bayesian时使用,取值为1时采样权重服从指数分布;取值为0时所有采样权重均等于1。取值范围[0,inf),值越大、bagging就越激进
    'subsample': 0.6, # 样本采样比率(行采样)
    'sampling_frequency': 'PerTree', # 采样频率,取值PerTree(在构建每棵新树之前采样)、PerTreeLevel(默认值,在子树的每次分裂之前采样);仅支持CPU
    'use_best_model': True, # 让模型使用效果最优的子树棵树/迭代次数,使用验证集的最优效果对应的迭代次数(eval_metric:评估指标,eval_set:验证集数据),布尔类型可取值0,1(取1时要求设置验证集数据)
    'best_model_min_trees': 50, # 最少子树棵树,和use_best_model一起使用
    'depth': 4, # 树深,默认值6
    'grow_policy': 'SymmetricTree', # 子树生长策略,取值SymmetricTree(默认值,对称树)、Depthwise(整层生长,同xgb)、Lossguide(叶子结点生长,同lgb)
    'min_data_in_leaf': 500, # 叶子结点最小样本量
#    'max_leaves': 12, # 最大叶子结点数量
    'one_hot_max_size': 4, # 对唯一值数量<one_hot_max_size的类别型特征使用one-hot编码
    'rsm': 0.8, # 列采样比率,别名colsample_bylevel 取值(0,1],默认值1
    'nan_mode': 'Max', # 缺失值处理方法,取值Forbidden(不支持缺失值,输入包含缺失时会报错)、Min(处理为该列的最小值,比原最小值更小)、Max(同理)
    'input_borders': None, # 特征数据边界(最大最小边界)、会影响缺失值的处理(nan_mode取值Min、Max时),默认值None、在训练时特征取值的最大最小值即为特征值边界
    'boosting_type': 'Ordered', # 提升类型,取值Ordered(catboost特有的排序提升,在小数据集上效果可能更好,但是运行速度较慢)、Plain(经典提升)
    'max_ctr_complexity': 2, # 分类特征交叉的最高阶数,默认值4
    'logging_level':'Verbose', # 模型训练过程的信息输出等级,取值Silent(不输出信息)、Verbose(默认值,输出评估指标、已训练时间、剩余时间等)、Info(输出额外信息、树的棵树)、Debug(debug信息)
    'metric_period': 1, # 计算目标值、评估指标的频率,默认值1、即每次迭代都输出目标值、评估指标
    'early_stopping_rounds': 20,
    'border_count': 254, # 数值型特征的分箱数,别名max_bin,取值范围[1,65535]、默认值254(CPU下), # 设置提前停止训练,在得到最佳的评估结果后、再迭代n(参数值为n)次停止训练,默认值不启用
    'feature_border_type': 'GreedyLogSum', # 数值型特征的分箱方法,取值Median、Uniform、UniformAndQuantiles、MaxLogSum、MinEntropy、GreedyLogSum(默认值)
    
}

2.6 定义模型

model = CatBoostClassifier(**params)

2.7 训练

model.fit(x_train, y_train,eval_set=[(x_test,y_test)],cat_features=cat_features,plot=True,)
#model.fit(train_pool,eval_set=validation_pool,cat_features=cat_features,plot=True)

2.8 预测

pred_y = model.predict(x_test)
y_pred=[list(x).index(max(x)) for x in pred_y]
print("accuracy_score",accuracy_score(y_test,y_pred))
print('f1_score',f1_score(y_test, np.array(y_pred), average='weighted'))

 2.9 画图

import matplotlib.pyplot as plt 
fea_ = model.feature_importances_
fea_name = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
plt.figure(figsize=(10, 10))
plt.barh(fea_name,fea_,height =0.5)

        注意: 可以将fea_name = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']换成自己数据集中的特征名。

 2.10 特征排序显示

import matplotlib.pyplot as plt
import numpy as np
fea_ = model.feature_importances_
print(fea_)
print(type(fea_))
fea_name = model.feature_names_
print(fea_name)
idx_name = {}
with open('./feature_name.txt', 'r') as rf:
    for line in rf:
        ln = line.strip().split(' ')
        idx_name[ln[0]] = ln[1]
print(idx_name)
 
# fea_arr = np.array(fea_)
idx = np.argsort(fea_)
print('---idx: ', idx)
print(idx.shape)
final_feat = []
final_name = []
 
for i in idx:
    print('--{0}   {1}'.format(i, fea_[i]))
    final_feat.append(fea_[i])
    final_name.append(idx_name[str(i)])
print(final_feat)
print(final_name)
 
fig, ax = plt.subplots(figsize=(11, 11))
 
# Horizontal Bar Plot
ax.barh(final_name, final_feat, height=0.5)
 
# Remove axes splines
for s in ['top', 'bottom', 'left', 'right']:
    ax.spines[s].set_visible(False)
 
# Add x, y gridlines
ax.grid(b=True, color='grey',
        linestyle='-.', linewidth=0.5,
        alpha=0.2)
# Add annotation to bars
for i in ax.patches:
    plt.text(i.get_width()+0.2, i.get_y()+0.2,
             str(round((i.get_width()), 2)),
             fontsize=9, fontweight='bold',
             color='black')
ax.set_title('feature importance' )
plt.show()

         注意:文件格式

Reference:

        1.catboost完全指南 - 知乎

### 构建CatBoost分类模型 #### 准备环境与安装依赖库 为了使用 CatBoost 进行分类任务,首先需要确保环境中已安装必要的 Python 库。可以通过 pip 安装 catboost: ```bash pip install catboost ``` #### 导入所需模块并加载数据集 在开始之前,导入所需的 Python 模块,并准备用于训练的数据集。 ```python import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from catboost import CatBoostClassifier, Pool from sklearn.metrics import accuracy_score ``` 假设有一个 CSV 文件作为输入源,则可以如下方式读取数据: ```python data = pd.read_csv('your_dataset.csv') X = data.drop(columns=['target']) y = data['target'] feature_names = list(X.columns) categorical_features_indices = np.where(X.dtypes != float)[0] # 获取类别型特征索引位置 ``` #### 划分训练集和测试集 将原始数据划分为训练集和验证集以便后续评估模型表现。 ```python X_train, X_validation, y_train, y_validation = train_test_split( X, y, test_size=0.25, random_state=42 ) ``` #### 创建Pool对象 创建 `Pool` 对象来存储训练样本及其标签信息,这有助于提高效率和支持更多功能特性。 ```python train_pool = Pool(data=X_train, label=y_train, feature_names=feature_names, cat_features=categorical_features_indices) validate_pool = Pool(data=X_validation, label=y_validation, feature_names=feature_names, cat_features=categorical_features_indices) ``` #### 初始化并配置CatBoostClassifier实例 设置超参数以初始化一个新的 CatBoost 分类器实例;这里仅展示部分常用参数设定方法。 ```python model = CatBoostClassifier(iterations=1000, learning_rate=0.1, depth=6, loss_function='Logloss', eval_metric='Accuracy', task_type="CPU", verbose=False) ``` #### 训练模型 调用 fit 方法启动训练过程,期间会自动计算损失函数值变化情况直至收敛或达到最大迭代次数限制。 ```python model.fit(train_pool, eval_set=validate_pool, use_best_model=True); ``` #### 预测新样本所属类别 完成训练之后即可利用该模型预测未知数据点对应的类别标签。 ```python preds_class = model.predict(validate_pool) print(f'Validation Accuracy: {accuracy_score(y_validation, preds_class):.4f}') ``` #### 可视化重要性评分 最后还可以查看各个属性对于最终输出的影响程度,帮助理解哪些因素最为关键。 ```python import matplotlib.pyplot as plt plt.figure(figsize=(8, 6)) feat_importances = pd.Series(model.get_feature_importance(), index=feature_names).sort_values() feat_importances.plot(kind='barh', color='skyblue') plt.title("Feature Importance Scores") plt.show() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值