文章目录
前言
YOLOv8 是由Ultralytics团队开发的,2023 年发布。YOLO系列模型以其快速和准确的目标检测能力而闻名,并且YOLOv8继承了前几代YOLO模型的优点,同时进行了多方面的改进和优化,以提高检测性能和效率。YOLOv8 常用于目标检测、分割、关键点检测和分类。
🎓一、YOLOv8代码下载地址
源码下载地址 :链接: link
源码提取码: rpe7
注意注意注意:如果在我之前的文章下载过YOLOv8源码,不用重新下载了,没有特殊说明都是用同一个版本的源码
🍀🍀1.官网的预训练模型下载
进入官网的源码下载地址 :链接: link,往下面拉,看到模型位置,YOLOv8针对不同的场景和应用提供了YOLOv8n、YOLOv8s等不同大小的模型,具体看官网提供的,需要下载哪个,鼠标左键单击下载就行。
我的源码包已经下载好了yolov8n.pt模型了,如果需要其他权重自行下载就行
。
🎓二、YOLO环境配置教程
YOLOv11/YOLOv10/YOLOv9/YOLOv8/YOLOv7/YOLOv5 环境都是通用的,只需要安装一次就行
🍀🍀1.pytorch环境安装
手把书pytorch安装教程链接参考链接: pytorch环境安装教程视频
🍀🍀2.其他依赖安装
安装requirements.txt文件的环境,需要注释掉下面两行,前面的步骤已经安装了,不注释的话会覆盖前面的会安装最新版本的pytorch,所以注释掉
没有这个文件可以自己新建一个requirements.txt,然后把下面代码复制进去就好了
# Ultralytics requirements
# Example: pip install -r requirements.txt
# Base ----------------------------------------
matplotlib>=3.3.0
numpy==1.24.4 # pinned by Snyk to avoid a vulnerability
opencv-python>=4.6.0
pillow>=7.1.2
pyyaml>=5.3.1
requests>=2.23.0
scipy>=1.4.1
tqdm>=4.64.0
# Logging -------------------------------------
# tensorboard>=2.13.0
# dvclive>=2.12.0
# clearml
# comet
# Plotting ------------------------------------
pandas>=1.1.4
seaborn>=0.11.0
# Export --------------------------------------
# coremltools>=7.0 # CoreML export
# onnx>=1.12.0 # ONNX export
# onnxsim>=0.4.1 # ONNX simplifier
# nvidia-pyindex # TensorRT export
# nvidia-tensorrt # TensorRT export
# scikit-learn==0.19.2 # CoreML quantization
# tensorflow>=2.4.1 # TF exports (-cpu, -aarch64, -macos)
# tflite-support
# tensorflowjs>=3.9.0 # TF.js export
# openvino-dev>=2023.0 # OpenVINO export
# Extras --------------------------------------
psutil # system utilization
py-cpuinfo # display CPU info
thop>=0.1.1 # FLOPs computation
# ipython # interactive notebook
# albumentations>=1.0.3 # training augmentations
# pycocotools>=2.0.6 # COCO mAP
# roboflow
手把书安装教程链接参考链接: 其他依赖库安装,视频教程
🎓三、YOLOv8推理
🍀🍀1.新建推理文件
(1)在根目录新建一个python文件,取名为:detect.py
(2)把推理代码复制到detect.py文件
注意注意注意:模型路径改成你自己的路径,还有预测图像也改成你自己的路径
推理的代码如下:
# -*- coding: utf-8 -*-
"""
@Auth : 挂科边缘
@File :detect.py
@IDE :PyCharm
@Motto:学习新思想,争做新青年
@Email :179958974@qq.com
@qq :179958974
"""
from ultralytics import YOLO
# Load a model
model = YOLO(model=r'D:\2-Python\1-YOLO\YOLOv8\new-yolov8\ultralytics-main\yolov8n.pt',task='detect') # load a pretrained model (recommended for training)
# # Train the model
# results = model.train(data='coco128-seg.yaml', epochs=100, imgsz=640)
model.predict(source=r'D:\2-Python\1-YOLO\YOLOv8\new-yolov8\ultralytics-main\ultralytics\assets\zidane.jpg',save=True,show=True)
推理代码的参数解释
1.model参数:该参数可以填入模型文件路径
2.source参数:该参数可以填入需要推理的图片或者视频路径,如果打开摄像头推理则填入0就行
3.save参数:该参数填入True,代表把推理结果保存下来,默认是不保存的,所以一般都填入True
4.show参数:该参数填入True,代表把推理结果以窗口形式显示出来,默认是显示的,这个参数根据自己需求打开就行,不显示你就填False就行
5.task参数:该参数用于指定要执行的任务类型,目标检测任务填detect,yolov8提供四种任务类型,如下:detect(目标检测), segment(目标检测), classify(目标检测), pose(目标检测)
修改完直接鼠标右击运行就行
🍀🍀2.推理结果
拿官网模型进行推理,推理成功,如下图
总结
YOLOv8推理自己的模型或官网模型到此结束,有问题可以留言,创作不易,请帮忙点个爱心呗,谢谢