YOLOv11改进 ,YOLOv11改进主干网络为MobileNetV3,助力涨点


在这里插入图片描述


YOLOv11改进介绍

YOLOv11 跟 YOLOv8 结构差不多相似,只是作者在 YOLOv8 基础上进行了改进,我感觉 YOLOv11 训练速度更快,map和精度应该比 YOLOv8 高一些,所以我会把 YOLOv11 改进也写在本专栏里面。YOLOv11 改进,可以看往期 YOLOv8 改进主干网络教程,原理都是一样的,这里就不多讲了,这里出一期教程方便理解,只需订阅 YOLOv8 改进专栏, 同样适用于 YOLOv11 改进,一个专栏轻轻松松拿捏 YOLOv8 改进和 YOLOv11 改进。


摘要

MobileNetV3通过结合硬件感知网络架构搜索(NAS)和NetAdapt算法,通过新颖的架构改进进一步提升了性能。本文开始探讨了自动化搜索算法与网络设计如何协同工作,以利用互补方法来提升整体技术水平。通过这一过程,创建了两个新的MobileNet模型:MobileNetV3-Large和MobileNetV3-Small,分别针对高资源和低资源使用场景。这些模型随后被适配并应用于目标检测和语义分割任务。对于语义分割(或任何密集像素预测)任务,提出了一种新的高效分割解码器——Lite Reduced Atrous Spatial Pyramid Pooling(LR-ASPP)。我们在移动端的分类、检测和分割任务中取得了新的最先进的成果。相比于MobileNetV2,MobileNetV3-Large在ImageNet分类上精度提高了3.2%,同时延迟减少了15%;MobileNetV3-Small的精度提高了4.6%,而延迟减少了5%。在COCO检测任务中,MobileNetV3-Large的检测速度比MobileNetV2快25%,而精度几乎相同。对于Cityscapes分割任务,MobileNetV3-Large LR-ASPP比MobileNetV2 R-ASPP快30%,且精度相近。


理论介绍

MobileNetV3,使用平台感知NAS来搜索全局网络结构,通过优化每个网络块来实现这一目标。然后,使用NetAdapt算法逐层搜索滤波器的数量。这些技术是互补的,可以结合起来有效地找到针对特定硬件平台优化的模型。通过架构搜索找到模型后,观察到一些最后几层以及一些早期层的计算成本较高。作者提出了一些架构修改,以减少这些慢层的延迟,同时保持准确性。这些修改超出了当前搜索空间的范围。第一个修改是重新设计网络的最后几层的交互方式,以更高效地产生最终特征。基于 MobileNetV2倒置瓶颈结构和变体的当前模型使用 1x1 卷积作为最终层,以扩展到更高维度的特征空间。这一层对于提供丰富的预测特征至关重要,但代价是增加了延迟。为了减少延迟并保留高维特征,作者将这一层移到最终平均池化之后。现在,这组最终特征在 1x1 的空间分辨率上计算,而不是 7x7 的空间分辨率。这一设计选择的结果是,特征的计算在计算和延迟方面几乎变得免费。一旦这一特征生成层的成本得到缓解,先前的瓶颈投影层就不再需要用于减少计算。这一观察使我们能够去除先前瓶颈层中的投影和滤波层,进一步减少计算复杂度。高效的最后阶段减少了 7 毫秒的延迟,占运行时间的 11%,并减少了3000万MAdds 的操作量,而几乎没有损失准确性。如图,原始最后阶段与高效最后阶段的比较。这个更高效的最后阶段能够在不损失准确性的情况下,删除网络末端的三个高代价层。
在这里插入图片描述

MobileNetV3理论详解可以参考链接ÿ

### 将YOLOv8主干网络替换为MobileNetv3目标检测模型中,主干网络的选择对于性能至关重要。为了提高计算效率并保持良好的精度,在YOLOv8框架下采用更轻量级的MobileNetV3作为新的骨干网是一个合理的选择[^1]。 #### 修改配置文件 首先需要调整`yolov8.yaml`中的backbone部分定义来匹配MobileNet v3结构特性: ```yaml # yolov8_custom.yaml nc: 80 # number of classes depth_multiple: 0.33 width_multiple: 0.5 ... backbone: - [Focus, c1=3, c2=16, k=3] - [Conv, c1=16, c2=16, ... ] # Replace with MobileNet V3 layers accordingly. ``` 注意这里仅展示了简化版配置片段;实际操作时应依据官方文档指导完成全部必要参数设置[^2]。 #### 编写自定义Backbone模块 由于预训练权重不兼容问题,建议重新构建适用于YOLO架构下的MobileNetV3类,并确保其输入输出维度与原有设计相吻合。可以参考如下Python代码创建相应组件: ```python import torch.nn as nn from torchvision.models.mobilenet import mobilenet_v3_large class CustomMobilenetV3(nn.Module): def __init__(self, pretrained=True): super(CustomMobilenetV3, self).__init__() base_model = mobilenet_v3_large(pretrained=pretrained) # Remove last few fully connected layers to adapt YOLO structure requirements features = list(base_model.features.children()) self.backbone = nn.Sequential(*features[:-1]) def forward(self, x): return self.backbone(x) if __name__ == "__main__": model = CustomMobilenetV3() print(model) ``` 此脚本实现了基于PyTorch库加载mobilenet_v3_large函数生成的基础版本,并移除了不适合直接用于特征提取的部分层以适应YOLO需求[^3]。 #### 训练过程中的挑战 当更换不同类型的卷积神经网络作为探测器的核心组成部分时可能会面临一些困难: - **迁移学习效果不佳**: 如果新旧两套体系差异较大,则简单复制原模型权值往往难以取得理想成绩; - **超参调优复杂度增加**: 更改基础构件后原有的优化策略未必适用,需投入更多精力探索最佳实践方案; - **硬件资源消耗变化**: 轻量化改进虽然有助于降低功耗提升速度,但也可能导致GPU利用率波动等问题发生[^4]。 通过上述步骤可以在一定程度上实现在YOLOv8基础上引入MobileNetV3的目标,但仍需针对具体应用场景不断测试验证直至满足预期指标为止。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

挂科边缘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值