YOLOv11 作为最新的目标检测模型,具有高效的实时检测能力。然而,在处理复杂场景时,仍存在精度不足的问题。FRFN 通过逐层细化特征,增强了网络对局部和全局信息的捕捉能力。这种方法特别适用于需要多尺度特征、小目标、遮挡等任务,使其在目标检测任务中尤为重要。为此,结合 FRFN 的特征细化能力,能够提升 YOLOv11 的特征提取与表示能力。


YOLOv11 作为最新的目标检测模型,具有高效的实时检测能力。然而,在处理复杂场景时,仍存在精度不足的问题。FRFN 通过逐层细化特征,增强了网络对局部和全局信息的捕捉能力。这种方法特别适用于需要多尺度特征、小目标、遮挡等任务,使其在目标检测任务中尤为重要。为此,结合 FRFN 的特征细化能力,能够提升 YOLOv11 的特征提取与表示能力。