YOLOv11模型改进-模块-引入特征细化模块FRFN 解决小目标、遮挡等问题

        YOLOv11 作为最新的目标检测模型,具有高效的实时检测能力。然而,在处理复杂场景时,仍存在精度不足的问题。FRFN 通过逐层细化特征,增强了网络对局部和全局信息的捕捉能力。这种方法特别适用于需要多尺度特征、小目标、遮挡等任务,使其在目标检测任务中尤为重要。为此,结合 FRFN 的特征细化能力,能够提升 YOLOv11 的特征提取与表示能力。

原模型
改进后的模型
### FRFN 模块概述 FRFN(Feature Refinement Fusion Network)是一种常用于计算机视觉领域中的网络结构设计,主要用于特征提取、融合以及优化的任务。它通过多尺度特征交互和上下文信息增强来提升模型性能[^1]。 具体而言,FRFN 的核心功能在于对输入数据的不同层次特征进行精细化处理并实现高效的信息传递。这种机制能够显著改善目标检测、图像分割以及其他密集预测任务的表现。其主要特点包括但不限于: - **多层次特征融合**:通过对低层细节特征与高层语义特征的有效结合,增强了模型对于复杂场景的理解能力。 - **自适应权重调整**:引入注意力机制或动态加权策略,使得不同区域的重要性得以灵活反映。 - **轻量化架构设计**:尽管具备强大的表达能力,但整体计算开销较低,适合部署于边缘设备上运行。 以下是基于 Python 实现的一个简化版 FRFN 构件示例代码片段: ```python import torch.nn as nn class FRFN(nn.Module): def __init__(self, in_channels, out_channels): super(FRFN, self).__init__() # 定义卷积操作以完成特征映射转换 self.conv_low_level = nn.Conv2d(in_channels=in_channels//2, out_channels=out_channels//2, kernel_size=1) self.conv_high_level = nn.Conv2d(in_channels=in_channels//2, out_channels=out_channels//2, kernel_size=3, padding=1) # 注意力模块可选组件 self.attention_module = AttentionBlock(out_channels) def forward(self, low_features, high_features): mapped_low = self.conv_low_level(low_features) mapped_high = self.conv_high_level(high_features) fused_feature = mapped_low + mapped_high refined_output = self.attention_module(fused_feature) return refined_output ``` 上述代码定义了一个基础版本的 FRFN 类型神经网络单元,其中包含了两个分支分别负责处理来自浅层网络部分所捕获到的小范围局部纹理特性以及深层网络输出的大视野全局概念描述向量;最后再经由注意力建模进一步加强关键位置贡献度从而获得更优解空间表示形式。 ### 关于资料文档下载及使用说明 针对希望深入研究该主题的研究人员或者开发者来说,可以从如下几个方面入手获取更多关于 FRFN 模块的技术支持材料: - 访问官方开源项目主页链接地址【1】https://github.com/amusi/CVPR2024-Papers-with-Code 获取最新论文列表及其对应源码实现; - 利用 AMiner 学术搜索引擎查询相关学者发表成果详情页网址【2】https://www.aminer.cn/ 寻找相似课题方向延伸阅读参考资料集合。 同时提醒各位使用者,在实际应用过程中需特别留意版权归属问题以及遵循各平台规定条款合法合规地引用他人劳动结晶成果内容。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值