YOLOv11改进,YOLOv11检测头融合DynamicHead,并添加小目标检测层(四头检测),适合目标检测、分割等任务


在这里插入图片描述


摘要

作者提出一种新的检测头,称为“动态头”,旨在将尺度感知、空间感知和任务感知统一在一起。如果我们将骨干网络的输出(即检测头的输入)视为一个三维张量,其维度为级别 × 空间 × 通道,这样的统一检测头可以看作是一个注意力学习问题,直观的解决方案是对该张量进行全自注意力机制的构建。然而,直接在所有维度上学习注意力函数过于困难,且计算成本过高。因此,作者提出通过分别在特征的每个特定维度上部署注意力机制,即在级别、空间和通道维度上来解决这一问题。

在这里插入图片描述


# 理论介绍

DynamicHead模块是针对目标检测任务提出的一种新的头部(head)结构,它的设计目的是通过引入多种注意力机制,提升模型的检测能力。核心思想是使得检测头部可以动态地根据输入特征进行自适应调整,从而提高模型在不同尺度、空间、任务等方面的表现。DynamicHead模块的关键组成部分包括:

  • Scale-Aware Attention Module(尺度感知注意力模块):该模块根据特征的尺度进行调整,使得不同尺度的特征能在合适的尺度下进行融合和处理。它通过为不同尺度的特征赋予权重来优化尺度差异的影响。
  • Spatial-Aware Attention Module(空间感知注意力模块):该模块针对空间位置进行优化。通过对特征图中的重要区域进行加权,使得网络能更关注目标物体的前景区域,避免特征图的冗余部分对模型性能造成影响。
  • Task-Aware Module(任务感知模块):这个模块根据具体任务(如分类、定位等)调整头部的输出。它能根据任务需求优化目标的分类或回归结果,提高模型的准确度和鲁棒性。

下图摘自论文
在这里插入图片描述

理论详解可以参考链接:论文地址
代码可在这个链接找到:代码地址


小目标理论

在YOLOv11 中,输入图像的尺寸为 640x640x3,经过 8 倍、16 倍和 32 倍下采样后分别得到 80x80、40x40 以及 20x20 大小的特征图,网络最终在这三个不同尺度的特征图上进行目标检测。在这三个尺度的特征图中,局部感受野最小的是 8 倍下采样特征图,即如果将该特征图映射到原输入图像,则每个网格对应原图 8x8 的区域。对于分辨率较小的目标而言,8 倍下采样得到的特征图感受野仍然偏大,容易丢失某些小目标的位置和细节信息。为了改善目标漏检现状,对 YOLOv8 的 Head 结构进行优化,在原有的三尺度检测头的基础之上,新增一个针对微小目标检测的检测头 ,YOLOv11 原有 P3、P4 和 P5 这 3 个输出层&#x

### YOLO 模型检测头对不同尺寸目标的检测效果 YOLO(You Only Look Once)作为一种单阶段目标检测算法,在处理不同尺寸的目标时存在一定的局限性。该模型将输入图像划分为S×S网格,每个网格负责预测B个边框及其置信度分数和类概率[^1]。 #### 小目标检测挑战 对于较小的目标,YOLO表现得不如其他方法理想。由于每个单元格仅能预测有限数量的边界框,默认情况下为两个,且这些边界框归属于同一类别,因此当场景中有大量密集分布的小物体时,YOLO可能会遗漏部分实例或者误分类它们[^4]。 #### 大目标检测能力 相比之下,较大的目标更容易被YOLO准确定位分类。这是因为大目标通常占据更多的像素区域,使得网络能够更可靠地捕捉到特征信息。然而,即使是对较大对象,如果形状异常或具有非常规的比例尺,则可能影响最终的结果准确性。 #### 改善措施 为了提高对各种规模尤其是小型物品的有效识别率,后续版本如YOLOv3引入了多尺度预测机制——即通过融合来自不同层次特征图的信息来增强小物件感知力;另外还借鉴了Faster R-CNN中的Anchor Boxes概念以更好地适应多样化的宽高比率需求。 ```python def yolo_detection_head(image_tensor, model): """ 使用给定的YOLO模型执行前向传播操作, 返回针对不同大小目标检测结果。 参数: image_tensor (Tensor): 输入图片张量 model (Model): 已加载权重的YOLO模型 返回: detections (List[Tuple]): 包含(x_min,y_min,x_max,y_max,score,class_id)元组列表 """ with torch.no_grad(): outputs = model(image_tensor) detections = non_max_suppression(outputs) return detections ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

挂科边缘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值