自从yolov系列模型发布以来,平均按照每年更新一次的版本来更新yolov系列模型,但是yolo的作者已经参与其系列模型的更新了,而后期的模型更新都是不同的团队在yolo系列模型上来更新,只是大家按照一个约定俗成的做法,在前任的基础上,更新YOLO系列的版本号。
YOLOv9模型简介
YOLOv9 是Chien-Yao Wang 等人提出的 YOLO 系列的最新版本。 于 2024 年 2 月 21 日发布。它是 YOLOv7 的改进,两者均由 Chien-Yao Wang 及其同事开发。 YOLOv7 通过所谓的可训练bag-of-freebies在优化训练过程方面取得了重大进展,有效提高了训练效率,从而在不增加推理成本的情况下提高了对象检测的准确性。然而,YOLOv7 并没有专门解决输入数据前馈过程中的信息丢失问题,这一挑战被称为信息瓶颈。这个问题是由网络中的缩减操作引起的,这可能会稀释重要的输入数据。
YOLOv9模型与其他版本的对比
现有的解决方案如可逆架构、掩模建模和深度监督有助于减少信息瓶颈,但上述方法在训练和推理过程中存在不同的缺点。它对于较小的模型架构也不太有效&#