YOLO对象检测模型更新无止境—— YOLOv9模型会不会是最终版本

YOLOv9是Chien-Yao Wang等人提出的最新目标检测模型,通过可编程梯度信息(PGI)和通用高效层聚合网络(GELAN)解决了YOLOv7的信息瓶颈问题,提高了检测的准确性和效率。模型包含PGI和GELAN两个创新技术,旨在确保深度学习中的信息保留和高效推理,适用于轻量级神经网络。YOLOv9提供不同尺寸的模型,适用于各种计算环境和任务,实现在多个数据集上的高精度表现。
摘要由CSDN通过智能技术生成

自从yolov系列模型发布以来,平均按照每年更新一次的版本来更新yolov系列模型,但是yolo的作者已经参与其系列模型的更新了,而后期的模型更新都是不同的团队在yolo系列模型上来更新,只是大家按照一个约定俗成的做法,在前任的基础上,更新YOLO系列的版本号。

YOLOv9模型简介

YOLOv9 是Chien-Yao Wang 等人提出的 YOLO 系列的最新版本。 于 2024 年 2 月 21 日发布。它是 YOLOv7 的改进,两者均由 Chien-Yao Wang 及其同事开发。 YOLOv7 通过所谓的可训练bag-of-freebies在优化训练过程方面取得了重大进展,有效提高了训练效率,从而在不增加推理成本的情况下提高了对象检测的准确性。然而,YOLOv7 并没有专门解决输入数据前馈过程中的信息丢失问题,这一挑战被称为信息瓶颈。这个问题是由网络中的缩减操作引起的,这可能会稀释重要的输入数据。

YOLOv9模型与其他版本的对比

现有的解决方案如可逆架构、掩模建模和深度监督有助于减少信息瓶颈,但上述方法在训练和推理过程中存在不同的缺点。它对于较小的模型架构也不太有效&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

人工智能研究所

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值