19.6.22 小白随记:关于embedding嵌入层

本文介绍了如何将预训练的词向量应用于神经网络的embedding层,探讨了word2vec的无监督学习与embedding层的监督学习区别。通过一个分类任务的代码示例,解释了如何用Tokenizer数字化单词,用glove向量初始化embedding层,并固定词嵌入权重,以实现迁移学习。embedding层的主要作用是降维,避免数据稀疏性问题。
摘要由CSDN通过智能技术生成

#在完成了词向量的学习,激动的想赶快应用到神经网络当中,无奈直接的植入到神经网络的embedding中是不能使用的,所以还是需要了解embedding层的使用:

嵌入层被定义为网络的第一个隐藏层,必须有三个参数:

  • input_dim:文本数据中词汇的大小
  • output_dim:嵌入单词的向量空间的大小
  • input_length:输入序列的长度

嵌入层的输出是一个三维向量(x,y,z),x代表有多少个句子(样本);y代表这个句子的长度(长度需要统一);z代表嵌入后的维度。
如果希望Dense层直接到embedding层,必须先将y和z压缩到一行,形成一个(x,yz)的二维矩阵。


embedding layer的使用方式:

  • 单独使用学习嵌入,之后可以用在另一个模型中
  • 可以作为深度学习model的一部分,与model本身一起学习
  • 可以加载训练好的词嵌入模型,相当于一种迁移学习

关于word2vec与embedding layer:

  • word2vec:无监督,利用上下文环境来学习词嵌入表示
  • embedding layer:监督,嵌入层权重的更新是基于标签的信息进行学习
    注:之前看代码总结流程,大概就是先要训练词向量,然后如果用keras有embedding层可以处理,直接植入才发现不是那么容易的,那个其实
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值