ROS2+OpenCV综合应用--1. ROS+opencv案例

本章节以单目摄像头为例。

        ROS 以自己的sensor_msgs/Image消息格式传递图像,无法直接进行图像处理,但是提供的【CvBridge】可以完美转换和被转换图像数据格式。【CvBridge】是一个 ROS 库,相当于ROS和Opencv之间的桥梁。

        OpenCV和ROS图像数据转换如下图所示:

image-20240123174814281

下面有三个案例来展示如何使用CvBridge进行数据转换。

1、单目摄像头

        驱动摄像头之前,需要在宿主机能够识别出摄像头设备;进入docker容器时候,需要挂载这个usb设备才能在docker容器中,识别到相机。配套的宿主机已经搭建好的环境,不需要额外配置,如果在新的宿主机上,则需要在启动文件上添加上这个。

--device=/dev/video0 \

--device=/dev/video1 \

image-20240123175047194

1.1、启动相机

1.1.1、源码路径

cd ~/opt/ros/humble/share/usb_cam/

1.1.2、安装步骤

以启动单目摄像头为例,可以使用指令直接下载ros2的摄像头驱动文件。

注意:出厂的docker镜像已经安装好了,无需重复安装。

ROS中结合OpenCV进行图像检测,可以使用以下步骤: 1. 订阅图像话题 首先,需要订阅相机或其他设备发布的图像话题,并将其转换为OpenCV可处理的格式。可以使用ROS自带的`cv_bridge`包将ROS图像消息转换为OpenCV图像格式。以下是一个示例代码,订阅名为`/camera/image_raw`的图像话题,并将其转换为OpenCV图像: ```python import rospy import cv2 from sensor_msgs.msg import Image from cv_bridge import CvBridge, CvBridgeError bridge = CvBridge() def image_callback(msg): try: cv_image = bridge.imgmsg_to_cv2(msg, "bgr8") except CvBridgeError as e: print(e) else: # 在这里进行图像检测 # ... rospy.init_node('image_subscriber') image_topic = "/camera/image_raw" rospy.Subscriber(image_topic, Image, image_callback) rospy.spin() ``` 在上述代码中,`image_callback`函数将接收到的ROS图像消息转换为OpenCV图像,并在其中进行图像检测。 2. 进行图像检测 一旦将图像转换为OpenCV格式,就可以使用OpenCV库中的函数进行图像处理和检测。例如,可以使用OpenCV中的`cv2.CascadeClassifier`类来进行人脸检测。以下是一个示例代码: ```python import rospy import cv2 from sensor_msgs.msg import Image from cv_bridge import CvBridge, CvBridgeError bridge = CvBridge() face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') def image_callback(msg): try: cv_image = bridge.imgmsg_to_cv2(msg, "bgr8") except CvBridgeError as e: print(e) else: gray = cv2.cvtColor(cv_image, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray, 1.3, 5) for (x,y,w,h) in faces: cv2.rectangle(cv_image,(x,y),(x+w,y+h),(255,0,0),2) cv2.imshow("Image window", cv_image) cv2.waitKey(3) rospy.init_node('image_subscriber') image_topic = "/camera/image_raw" rospy.Subscriber(image_topic, Image, image_callback) rospy.spin() ``` 在上述代码中,`haarcascade_frontalface_default.xml`是一个预训练的分类器文件,用于人脸检测。代码中使用`cv2.CascadeClassifier`类加载该文件,并使用`detectMultiScale`函数进行人脸检测。检测到人脸后,代码在图像中绘制矩形框以标记人脸。 3. 显示图像结果 最后,将检测结果显示在图像窗口中。可以使用OpenCV的`cv2.imshow`函数显示图像,用`cv2.waitKey`函数等待键盘输入,以保持图像窗口的显示。以下是示例代码: ```python cv2.imshow("Image window", cv_image) cv2.waitKey(3) ``` 希望这些步骤可以帮助您在ROS中结合OpenCV进行图像检测。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值