自动控制原理 (三): 时域分析法

有了控制系统的数学模型后, 就能对控制系统的性能做具体分析, 在经典控制理论中, 常用的有三种: 时域分析法、 根轨迹法、 频域法, 将分别接下来的三章介绍。 本章介绍时域分析法。

实际上, 后两种方法都是在时域分析的基础上, 并应用了很多时域分析的结论。 所以时域分析法十分的重要。

时域分析基础

时域分析法根据系统微分方程, 通过拉氏变换直接求出系统的时域响应; 依据响应的表达式及时间响应曲线分析系统性能, 找出系统结构、 参数与这些性能之间的关系。 一般分析系统的单位阶跃响应。

这是一种较为直接的方法, 可以准确且可提供系统时间响应的全部信息。

典型初始状态

时域分析法中典型的初始状态为零状态:
c ( 0 − ) = d c ( t ) d t ∣ t = 0 − = d 2 c ( t ) d t 2 ∣ t = 0 − = ⋯ = 0 c(0^-)=\left.\frac{\text dc(t)}{\text dt}\right|_{t=0^-}=\left.\frac{\text d^2c(t)}{\text dt^2}\right|_{t=0^-}=\dots=0 c(0)=dtdc(t) t=0=dt2d2c(t) t=0==0

典型外作用

典型的外作用输入有以下四种:

  1. 单位阶跃作用 ε ( t ) \varepsilon(t) ε(t)

  2. 单位斜坡作用:

  3. 单位脉冲函数 δ ( t ) \delta(t) δ(t)​ :​

    在这里插入图片描述

  4. 正弦函数 A sin ⁡ ω t ⋅ ε ( t ) A\sin \omega t\cdot\varepsilon(t) Asinωtε(t)​ :

典型时间响应

设系统的传递函数为 G ( s ) G(s) G(s)​ , 则输入典型外作用函数, 对应系统的典型时间响应如下:

  1. 单位脉冲响应:
    K ( s ) = G ( s ) ⇒ k ( t ) = L − 1 [ G ( s ) ] K(s)=G(s)\quad\Rightarrow\quad k(t)=\mathscr{L}^{-1}[G(s)] K(s)=G(s)k(t)=L1[G(s)]

  2. 单位阶跃响应:
    H ( s ) = G ( s ) 1 s ⇒ h ( t ) = L − 1 [ H ( s ) ] = ∫ 0 t k ( t ) d t H(s)=G(s)\frac{1}{s}\quad\Rightarrow\quad h(t)=\mathscr{L}^{-1}[H(s)]=\int^t_0k(t)\text dt H(s)=G(s)s1h(t)=L1[H(s)]=0tk(t)dt

  3. 单位斜坡响应:
    C t ( s ) = G ( s ) 1 s 2 ⇒ c t ( t ) = L − 1 [ C t ( s ) ] = ∫ 0 t h ( t ) d t C_t(s)=G(s)\frac{1}{s^2}\quad\Rightarrow\quad c_t(t)=\mathscr{L}^{-1}[C_t(s)]=\int^t_0h(t)\text dt Ct(s)=G(s)s21ct(t)=L1[Ct(s)]=0th(t)dt

这里请注意: 系统传递函数的拉氏反变换即为该系统的脉冲响应函数, 另请注意这三个响应之间的积分关系。

阶跃响应的性能指标

对于单位阶跃响应, 定义如下性能指标

  1. 延迟时间 t d t_d td : h(t) 上升到其稳态值的 50% 所需时间
  2. 上升时间 t r t_r tr : h(t) 从 10% 上升到 90% 所需时间
  3. 峰值时间 t p t_p tp : h(t) 超过其稳态值而到达第一个峰值所需的时间
  4. 超调量 σ % \sigma\% σ% : h(t) 超过稳态值的最大偏移量与稳态值之比
  5. 调节时间 t s t_s ts : 取 ± 5 % h ( ∞ ) \pm5\%h(\infty) ±5%h() ± 2 % h ( ∞ ) \pm2\%h(\infty) ±2%h() 作为误差带, h(t) 达到并不再超出该误差带的最小时间
  6. 稳态误差 e s s e_{ss} ess 1 − h ( ∞ ) 1-h(\infty) 1h()

在这里插入图片描述

一阶系统的时域响应

一个典型的一阶系统如下:

其单位阶跃响应为:
C ( s ) = 1 s ( T s + 1 ) = 1 s − T T s + 1 = 1 s − 1 s + 1 T ⇒ c ( t ) = 1 − e − t T ( t ≥ 0 ) e s s = 0 \begin{aligned} &C(s)=\frac{1}{s(Ts+1)}=\frac{1}{s}-\frac{T}{Ts+1}=\frac{1}{s}-\frac{1}{s+\frac{1}{T}}\\ \Rightarrow\quad&c(t)=1-\mathrm e^{-\frac{t}{T}}\quad(t\geq0)\\ &e_{ss}=0 \end{aligned} C(s)=s(Ts+1)1=s1Ts+1T=s1s+T11c(t)=1eTt(t0)ess=0
单位斜坡响应为:
C ( s ) = 1 s 2 ( T s + 1 ) = 1 s 2 − T s + T s + 1 T ⇒ c ( t ) = t − T + T e − t T ( t ≥ 0 ) e s s = T \begin{aligned} &C(s)=\frac{1}{s^2(Ts+1)}=\frac{1}{s^2}-\frac{T}{s}+\frac{T}{s+\frac{1}{T}}\\ \Rightarrow\quad&c(t)=t-T+T\mathrm e^{-\frac{t}{T}}\quad(t\geq0)\\ &e_{ss}=T \end{aligned} C(s)=s2(Ts+1)1=s21sT+s+T1Tc(t)=tT+TeTt(t0)ess=T

一阶系统的单位阶跃响应是无超调和振荡的, 其性能指标主要是调节时间 t s t_s ts , 一般可近似计算:
{ t s = 3 T 5 % 误差带 t s = 4 T 2 % 误差带 \begin{cases} t_s=3T&5\%\text{误差带}\\ t_s=4T&2\%\text{误差带} \end{cases} {ts=3Tts=4T5%误差带2%误差带

二阶系统的时域响应

二阶微分方程描述的系统称为二阶系统, 系统方程如下:
d 2 c ( t ) d t 2 + 2 ζ ω n d c ( t ) d t + ω n 2 c ( t ) = ω n 2 r ( t ) \frac{\text d^2c(t)}{\text dt^2}+2\zeta\omega_n\frac{\text dc(t)}{\text dt}+\omega_n^2c(t)=\omega_n^2r(t) dt2d2c(t)+2ζωndtdc(t)+ωn2c(t)=ωn2r(t)
式中: ω n \omega_n ωn 为无阻尼自然角频率 ( r a d / s rad/s rad/s), ζ \zeta ζ 为阻尼比;

拉氏变换后:
C ( s ) R ( s ) = ω n 2 s 2 + 2 ζ ω n s + ω n 2 \frac{C(s)}{R(s)}=\frac{\omega_n^2}{s^2+2\zeta\omega_n s+\omega_n^2} R(s)C(s)=s2+2ζωns+ωn2ωn2
根据阻尼比可分为如下四种情况:

过阻尼 ( ζ \zeta ζ​ > 1 )

此时系统传递函数的极点分别为:
p 1 = − 1 T 1 = ω n ζ 2 − 1 − ζ ω n p 2 = − 1 T 2 = − ω n ζ 2 − 1 − ζ ω n \begin{aligned} p_1&=-\frac{1}{T_1}=\omega_n\sqrt{\zeta^2-1}-\zeta\omega_n\\ p_2&=-\frac{1}{T_2}=-\omega_n\sqrt{\zeta^2-1}-\zeta\omega_n \end{aligned} p1p2=T11=ωnζ21 ζωn=T21=ωnζ21 ζωn
极点图和单位阶跃响应如下图所示:

此时系统无超调, 无稳态误差。

欠阻尼 ( 0 < ζ \zeta ζ < 1 )

此时系统的极点为:
p 1 , p 2 = − ζ ω n ± j ω d   , while  ω d = ω n 1 − ζ 2 p_1,p_2=-\zeta\omega_n\pm \mathrm j\omega_d\, ,\quad\text{while}\ \omega_d=\omega_n\sqrt{1-\zeta^2} p1,p2=ζωn±jωd,while ωd=ωn1ζ2
极点图和单位阶跃响应如下:

其中 ω d \omega_d ωd​ 称为阻尼振荡角频率 , 且 ω d < ω n \omega_d < \omega_n ωd<ωn​​ ; cos ⁡ β = ζ \cos\beta=\zeta cosβ=ζ​​。

二阶欠阻尼系统的阶跃响应

H ( s ) = G ( s ) 1 s = ω n s ( s 2 + 2 ζ ω n s + ω 2 ) = 1 s − s + 2 ζ ω n s 2 + 2 ζ ω n s + ω n 2 = 1 s − s + ζ ω n ( s + ζ ω n ) 2 + ω d 2 − ζ 1 − ζ 2 ω d ( s + ζ ω n ) 2 + ω d 2 \begin{aligned} H(s)&=G(s)\frac{1}{s}=\frac{\omega_n}{s(s^2+2\zeta\omega_ns+\omega^2)}\\ &=\frac{1}{s}-\frac{s+2\zeta\omega_n}{s^2+2\zeta\omega_n s+\omega_n^2}\\ &=\frac{1}{s}-\frac{s+\zeta\omega_n}{(s+\zeta\omega_n)^2+\omega_d^2}-\frac{\zeta}{\sqrt{1-\zeta^2}}\frac{\omega_d}{(s+\zeta\omega_n)^2+\omega_d^2}\\ \end{aligned} H(s)=G(s)s1=s(s2+2ζωns+ω2)ωn=s1s2+2ζωns+ωn2s+2ζωn=s1(s+ζωn)2+ωd2s+ζωn1ζ2 ζ(s+ζωn)2+ωd2ωd

经过拉式反变换可得:
h ( t ) = 1 − e − ζ ω n t 1 − ζ 2 sin ⁡ ( ω d t + β ) ,    ( t ≥ 0 ) h(t)=1-\frac{\text e^{-\zeta\omega_n t}}{\sqrt{1-\zeta^2}}\sin(\omega_d t+\beta),\;(t\geq0) h(t)=11ζ2 eζωntsin(ωdt+β),(t0)

二阶欠阻尼系统性能的定性分析
  • 平稳性:

    ζ \zeta ζ 越大, ω d \omega_d ωd 越小, 振荡倾向越弱。 σ % \sigma\% σ% 越小, 平稳性越好。 这也是为什么 ζ \zeta ζ​ 被称作阻尼比, 其值越大, 相当于阻尼越大, 系统能更快的减少振荡。 当阻尼比为0时, 系统无阻尼, 做等幅振荡。

    系统超调量和阻尼比的关系如下图:

    在这里插入图片描述

    而当 ζ \zeta ζ 一定时, ω n \omega_n ωn 越大, ω d \omega_d ωd 越大, 响应平稳性越差。

    总之, ζ \zeta ζ​ 大, ω n \omega_n ωn​​ 小的系统平稳性好。

  • 快速性:

    ζ \zeta ζ 在 0.7 附近时, 调节时间最短, 其超调量也小于 5 % 5\% 5%。 实际上, ζ = 0.707 \zeta=0.707 ζ=0.707 为最佳阻尼比。

    在所有 ζ ≥ 1 \zeta\geq1 ζ1 的无振荡和超调的响应中, ζ = 1 \zeta=1 ζ=1 时响应最快。

  • 稳态精度:

    根据终值定理1可得稳态误差 e s s e_{ss} ess
    e s s = 1 − lim ⁡ t → ∞ h ( t ) = 1 − lim ⁡ s → 0 s H ( s ) = 0 \begin{aligned} e_{ss}&=1-\lim_{t\rightarrow\infty}h(t)\\ &=1-\lim_{s\rightarrow0}sH(s)=0 \end{aligned} ess=1tlimh(t)=1s0limsH(s)=0

二阶欠阻尼系统性能的定量计算
  • 峰值时间:
    t p = π ω d = π ω n 1 − ζ 2 t_p=\frac{\pi}{\omega_d}=\frac{\pi}{\omega_n\sqrt{1-\zeta^2}} tp=ωdπ=ωn1ζ2 π

  • 超调量:
    h ( t p ) = 1 + e − π ζ 1 − ζ 2 ⇒ σ % = e − π ζ 1 − ζ 2 × 100 % \begin{aligned} &h(t_p)=1+\mathrm{e}^{-\frac{\pi\zeta}{\sqrt{1-\zeta^2}}}\\ \Rightarrow\quad&\sigma\%=\mathrm{e}^{-\frac{\pi\zeta}{\sqrt{1-\zeta^2}}}\times100\% \end{aligned} h(tp)=1+e1ζ2 πζσ%=e1ζ2 πζ×100%

  • 调节时间:

    由系统阶跃响应表达式可得:
    1 − e − ζ ω n t 1 − ζ 2 ≤ h ( t ) ≤ 1 + e − ζ ω n t 1 − ζ 2 1-\frac{\text e^{-\zeta\omega_n t}}{\sqrt{1-\zeta^2}}\leq h(t)\leq1+\frac{\text e^{-\zeta\omega_n t}}{\sqrt{1-\zeta^2}} 11ζ2 eζωnth(t)1+1ζ2 eζωnt
    设误差限为 Δ \Delta Δ , 则根据调节时间的定义可得:
    e − ζ ω n t s 1 − ζ 2 = Δ ⇒ t s = − 1 ζ ω n ln ⁡ ( Δ 1 − ζ 2 ) \begin{aligned} &\frac{\text e^{-\zeta\omega_n t_s}}{\sqrt{1-\zeta^2}}=\Delta\\ \Rightarrow\quad &t_s=-\frac{1}{\zeta\omega_n}\ln\left(\Delta\sqrt{1-\zeta^2} \right) \end{aligned} 1ζ2 eζωnts=Δts=ζωn1ln(Δ1ζ2 )
    ζ \zeta ζ < 0.8 时, 可用下式估算:
    { t s = 3.5 ζ ω n 5 % 误差带 t s = 4.5 ζ ω n 2 % 误差带 \begin{cases} t_s=\frac{3.5}{\zeta\omega_n}&5\%\text{误差带}\\ t_s=\frac{4.5}{\zeta\omega_n}&2\%\text{误差带} \end{cases} {ts=ζωn3.5ts=ζωn4.55%误差带2%误差带

无阻尼 ( ζ \zeta ζ = 0 )

极点图和单位阶跃响应如下:

在这里插入图片描述

振荡频率为 ω n \omega_n ωn
h ( t ) = 1 − cos ⁡ ω n t h(t)=1-\cos\omega_nt h(t)=1cosωnt

临界阻尼 ( ζ \zeta ζ = 1 )

极点图和单位阶跃响应如下:

在这里插入图片描述

阶跃响应为:
h ( t ) = 1 − e − ω n t ( 1 + ω n t ) , ( t ≥ 0 ) h(t)=1-\mathrm e^{-\omega_n t}(1+\omega_n t),\quad (t\geq0) h(t)=1eωnt(1+ωnt),(t0)
和过阻尼一样, 此时的系统无超调, 无稳态误差。 我们在设计控制器时一般就是想让系统的响应为临界阻尼。 此时的系统响应是在无超调的情况下, 响应速度最快的。


  1. 终值定理: 设 e(t) 的 Laplace 变换为 E(s) , 则 t 趋于无穷时 e(t) 的值和 s 趋于 0 时 sE(s) 的值相等, 当然前提是两者的极限均存在。 ↩︎

  • 3
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值