“Self-Challenging Improves Cross-Domain Generalization”阅读笔记

本文介绍了自挑战(RSC)算法,旨在改善深度学习模型的跨域泛化能力。通过抹去对分类贡献最大的特征,模型被迫从其他特征中学习,从而提高对不同域共享特征的关注,提升泛化性能。实验在多个数据集上展示了RSC的有效性。
摘要由CSDN通过智能技术生成

“Self-Challenging Improves Cross-Domain Generalization”阅读笔记

1 Motivation

1) 分类模型在域内取得了很好的判别效果,但跨域表现受限;

2) 卷积神经网络过度依赖对反向传播有重要影响的少数特征,导致其对于图像特征学习不够全面。

2 Contribution

1) 提出自挑战算法,强迫模型从弱势特征中归纳图像属性;

2) 提升了卷积神经网络模型的泛化能力。

3 Approach

3.1 表征自挑战(RSC)原理

所谓自挑战,就是强迫模型从对分类结果贡献更小的特征中学习如何分类。RSC想要解决的问题,其实是同一标签物体跨域判别不准确的问题,而不是学习不同物体的泛化表示,比如说,域 D 1 D_1 D1中的猫都有“胖胖的脸”这个属性,如果只针对 D 1 D_1 D1设计分类模型,那只需要根据“胖胖的脸”就能完成任务,可对于不同域中猫的图像来说,它们共有的属性可能是“胡须”、“耳朵”等相似的特征,RSC期望在域 D 1 D_1 D1更多关注这种不同域间都共享的通用表征,以实现更强的跨域泛化性。

RSC方法通过以梯度为判断标准,对所有特征求梯度,梯度值较大者表明该特征对模型分类结果影响较大,为了使模型不过度依赖这些容易的特征,在训练时将其抹去(置零),强迫模型从其他更不受关注的特征中学习类别信息,进而平衡模型从不同特征中提取信息的强度,其思想如下图所示(从上到下分别为原始模型,RSC训练,RSC训练后模型,中间颜色深浅表示梯度值高低):

该方法理解起来还是很容易的,对于一个分类任务,其输入为图像-标签对 < x , y > <\mathbf{x},\mathbf{y}> <x,y>,图像经过神经网络 f ( ⋅ , θ ) f(·,\theta) f(,θ)做出对应的类别预测,网络的训练损失为:

上面就是一个很传统的分类任务的表现形式,损失函数 l ( ⋅ , ⋅ ) l(·,·) l(,)通常是交叉熵函数。

f ( ⋅ , θ ) f(·,\theta) f(,θ)的最后一个进行类别预测的模块记为 h ( ⋅ , θ top ) h(·,{\theta}^{\text{top}}) h(,θtop),记 h ( ⋅ , θ top ) h(·,{\theta}^{\text{top}}) h(,θtop)的输入特征为 z \mathbf{z} z

可以计算最后 h ( ⋅ , θ top ) h(·,{\theta}^{\text{top}}) h(,θtop)关于 z \mathbf{z} z的梯度:

这里的 ⨀ \bigodot 表示点乘,这里的梯度表示 z \mathbf{z} z的不同维度对 h (

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值