参考文献:Ideals, Varieties, and Algorithms (4th ed.) [Cox, Little & O’Shea 2015-06-14]
前置文章:仿射簇 和 Groebner基、消元 和 扩展、簇和理想的对应
文章目录
Zariski Closures
任给一个集合
S
∈
k
n
S \in k^n
S∈kn,无论它是否是仿射簇,
I
(
S
)
=
{
f
∈
k
[
x
1
,
⋯
,
x
n
]
:
f
(
a
)
=
0
,
∀
a
∈
S
}
\pmb I(S) = \{ f \in k[x_1,\cdots,x_n]: f(a)=0,\forall a \in S \}
I(S)={f∈k[x1,⋯,xn]:f(a)=0,∀a∈S}
它总是一个环
k
[
x
1
,
⋯
,
x
n
]
k[x_1,\cdots,x_n]
k[x1,⋯,xn]上的根理想,于是根据 ideal–variety correspondence,
V
(
I
(
S
)
)
\pmb V(\pmb I(S))
V(I(S))是簇。
实际上,仿射簇 V ( I ( S ) ) \pmb V(\pmb I(S)) V(I(S))是包含集合 S S S的最小簇(smallest variety),任意的簇 W ⊇ S W \supseteq S W⊇S都有 V ( I ( S ) ) ⊆ W \pmb V(\pmb I(S)) \subseteq W V(I(S))⊆W
关于仿射空间(affine space)的一个子集的Zariski Closures,是包含这个集合的最小的仿射代数簇( the smallest affifine
algebraic variety)。如果
S
⊆
k
n
S \subseteq k^n
S⊆kn,那么它的Zariski闭包定义为
S
ˉ
=
V
(
I
(
S
)
)
\bar S = \pmb V(\pmb I(S))
Sˉ=V(I(S))
令
S
,
T
S,T
S,T都是
k
n
k^n
kn的子集,那么
- I ( S ˉ ) = I ( S ) \pmb I(\bar S) = \pmb I(S) I(Sˉ)=I(S)
- S ⊆ T ⇒ S ˉ ⊆ T ˉ S \subseteq T \Rightarrow \bar S \subseteq \bar T S⊆T⇒Sˉ⊆Tˉ
- S ∪ T ‾ = S ˉ ∪ T ˉ \overline{S \cup T} = \bar S \cup \bar T S∪T=Sˉ∪Tˉ
The Closure Theorem, first part
假设
k
k
k是代数封闭域,簇
V
=
V
(
f
1
,
⋯
,
f
s
)
⊆
k
n
V = \pmb V(f_1,\cdots,f_s) \subseteq k^n
V=V(f1,⋯,fs)⊆kn,投影映射
π
l
:
k
n
→
k
n
−
l
\pi_l: k^n \to k^{n-l}
πl:kn→kn−l保持最后的
n
−
l
n-l
n−l个分量,
l
l
l次消元理想
I
l
I_l
Il,那么:
V
(
I
l
)
\pmb V(I_l)
V(Il)是
π
l
(
V
)
\pi_l(V)
πl(V)的Zariski闭包,
V
(
I
l
)
=
π
l
(
V
)
‾
\pmb V(I_l) = \overline{\pi_l(V)}
V(Il)=πl(V)
一般地,令
V
V
V是簇,子集
S
⊆
V
S \subseteq V
S⊆V,如果满足
V
=
S
ˉ
V = \bar S
V=Sˉ,那么称
S
S
S是在
V
V
V里的Zariski稠密集(Zariski dense)。因此,当域
k
k
k是代数封闭的,集合
π
l
(
V
)
\pi_l(V)
πl(V)是仿射簇
V
(
I
l
)
\pmb V(I_l)
V(Il)的Zariski稠密集。
The Closure Theorem, second part
假设
k
k
k是代数封闭域,簇
V
=
V
(
I
)
⊆
k
n
V = \pmb V(I) \subseteq k^n
V=V(I)⊆kn,那么存在簇
W
⊆
V
(
I
l
)
W \subseteq \pmb V(I_l)
W⊆V(Il),使得
V
(
I
l
)
\
W
⊆
π
l
(
V
)
\pmb V(I_l) \backslash W \subseteq \pi_l(V)
V(Il)\W⊆πl(V)
且
V
(
I
l
)
\
W
‾
=
V
(
I
l
)
=
π
l
(
V
)
‾
\overline{\pmb V(I_l) \backslash W} = \pmb V(I_l) = \overline{\pi_l(V)}
V(Il)\W=V(Il)=πl(V)
ideal quotients
为了给出一般性算法,来计算两个簇的差 V \ W V \backslash W V\W的Zariski闭包,我们做如下构造。
令
I
,
J
I,J
I,J是环
k
[
x
1
,
⋯
,
x
n
]
k[x_1,\cdots,x_n]
k[x1,⋯,xn]上的理想,定义理想商(the ideal quotient (or colon ideal) of
I
I
I by
J
J
J)
I
:
J
=
{
f
∈
k
[
x
1
,
⋯
,
x
n
]
:
∀
g
∈
J
,
f
g
∈
I
}
I:J = \{ f \in k[x_1,\cdots,x_n]: \forall g \in J,\, fg \in I \}
I:J={f∈k[x1,⋯,xn]:∀g∈J,fg∈I}
可以验证
(
I
:
J
)
⋅
J
⊆
I
(I:J) \cdot J \subseteq I
(I:J)⋅J⊆I,也就是说
I
:
J
I:J
I:J收集了环中所有的使得
f
J
=
<
f
g
1
,
⋯
,
f
g
s
>
⊆
I
fJ=<fg_1,\cdots,fg_s> \subseteq I
fJ=<fg1,⋯,fgs>⊆I的那些多项式。
容易证明,理想商是理想,且 I ⊆ I : J I \subseteq I:J I⊆I:J
- 如果 I , J I,J I,J是理想,那么
V ( I ) = V ( I + J ) ∪ V ( I : J ) \pmb V(I) = \pmb V(I+J) \cup \pmb V(I:J) V(I)=V(I+J)∪V(I:J)
- 如果 V , W V,W V,W是簇,那么
V = ( V ∩ W ) ∪ V \ W ‾ V = (V \cap W) \cup \overline{V \backslash W} V=(V∩W)∪V\W
- 如果 I , J I,J I,J是理想,那么
V ( I ) \ V ( J ) ‾ ⊆ V ( I : J ) \overline{\pmb V(I) \backslash \pmb V(J)} \subseteq \pmb V(I:J) V(I)\V(J)⊆V(I:J)
- 假设
J
1
⊆
J
2
J_1 \subseteq J_2
J1⊆J2,那么
I : J 2 ⊆ I : J 1 I:J_2 \subseteq I:J_1 I:J2⊆I:J1
注意到
V
(
I
+
J
)
=
V
(
I
)
∩
V
(
J
)
\pmb V(I+J) = \pmb V(I) \cap \pmb V(J)
V(I+J)=V(I)∩V(J),那么由1
和2
,得到
V
(
I
+
J
)
∪
V
(
I
:
J
)
=
(
V
(
I
)
∩
V
(
J
)
)
∪
V
(
I
)
\
V
(
J
)
‾
\pmb V(I+J) \cup \pmb V(I:J) = (\pmb V(I) \cap \pmb V(J)) \cup \overline{\pmb V(I) \backslash \pmb V(J)}
V(I+J)∪V(I:J)=(V(I)∩V(J))∪V(I)\V(J)
那么3
能否取等呢?是不可以的,即使
k
k
k是代数闭域。
例子1
令 V = V ( x z , y z ) V = \pmb V(xz,yz) V=V(xz,yz), W = V ( z ) W = \pmb V(z) W=V(z),容易看出簇 V V V是 ( x , y ) − p l a n e (x,y)-plane (x,y)−plane 和 z − a x i s z-axis z−axis 的并集,而簇 W W W是 ( x , y ) − p l a n e (x,y)-plane (x,y)−plane
那么它们的差 V \ W V \backslash W V\W就是不含原点的 z − a x i s z-axis z−axis,容易证明它不是仿射簇。
环
k
[
x
,
y
,
z
]
k[x,y,z]
k[x,y,z]上,
<
x
z
,
y
z
>
<xz,yz>
<xz,yz>除
<
z
>
<z>
<z>的商
<
x
z
,
y
z
>
:
<
z
>
=
{
f
:
f
z
∈
<
x
z
,
y
z
>
}
=
{
f
:
f
z
=
A
x
z
+
B
y
z
}
=
{
f
:
f
=
A
x
+
B
y
}
=
<
x
,
y
>
\begin{aligned} <xz,yz> : <z> &= \{ f: fz \in <xz,yz> \}\\ &= \{ f: fz = Axz + Byz \}\\ &= \{ f: f = Ax + By \}\\ &= <x,y> \end{aligned}
<xz,yz>:<z>={f:fz∈<xz,yz>}={f:fz=Axz+Byz}={f:f=Ax+By}=<x,y>
因此,
V
\
W
V \backslash W
V\W的Zariski闭包属于
V
(
x
,
y
)
\pmb V(x,y)
V(x,y),也就是
z
−
a
x
i
s
z-axis
z−axis。事实上,可以验证
V
\
W
‾
=
V
(
x
,
y
)
\overline{V \backslash W} = \pmb V(x,y)
V\W=V(x,y)
例子2
令 I = < x 2 ( y − 1 ) > I=<x^2(y-1)> I=<x2(y−1)>, J = < x > J=<x> J=<x>,它们都是环 C [ x , y ] C[x,y] C[x,y]上的理想。
容易检验, V ( I ) = V ( x ) ∪ V ( y − 1 ) \pmb V(I) = \pmb V(x) \cup \pmb V(y-1) V(I)=V(x)∪V(y−1),它是 y − a x i s y-axis y−axis 与 y = 1 y=1 y=1 的并集。
容易计算,它们的差的闭包为 V ( I ) \ V ( J ) ‾ = V ( y − 1 ) \overline{\pmb V(I) \backslash \pmb V(J)} = \pmb V(y-1) V(I)\V(J)=V(y−1)
然而,计算理想商
I
:
J
=
<
x
2
(
y
−
1
)
>
:
<
x
>
=
{
f
:
f
x
=
A
x
2
(
y
−
1
)
}
=
{
f
:
f
=
A
x
(
y
−
1
)
}
=
<
x
(
y
−
1
)
>
\begin{aligned} I : J &= <x^2(y-1)>:<x>\\ &= \{ f: fx = Ax^2(y-1) \}\\ &= \{ f: f = Ax(y-1) \}\\ &= <x(y-1)> \end{aligned}
I:J=<x2(y−1)>:<x>={f:fx=Ax2(y−1)}={f:f=Ax(y−1)}=<x(y−1)>
有
V
(
I
:
J
)
=
V
(
x
(
y
−
1
)
)
=
V
(
x
)
∪
V
(
y
−
1
)
\pmb V(I:J) = \pmb V(x(y-1)) = \pmb V(x) \cup \pmb V(y-1)
V(I:J)=V(x(y−1))=V(x)∪V(y−1),这比Zariski闭包
V
(
I
)
\
V
(
J
)
‾
=
V
(
y
−
1
)
\overline{\pmb V(I) \backslash \pmb V(J)} = \pmb V(y-1)
V(I)\V(J)=V(y−1)严格大。
另外,如果检查 I : J 2 I:J^2 I:J2,会发现 V ( I ) \ V ( J ) ‾ = V ( I : J 2 ) \overline{\pmb V(I) \backslash \pmb V(J)} = \pmb V(I:J^2) V(I)\V(J)=V(I:J2);也就是说需要更高的幂次,这就导致了下边的结构。
saturations
令
I
,
J
I,J
I,J是环
k
[
x
1
,
⋯
,
x
n
]
k[x_1,\cdots,x_n]
k[x1,⋯,xn]的理想,定义饱和度( the saturation of
I
I
I with respect to
J
J
J)
I
:
J
∞
=
{
f
∈
k
[
x
1
,
⋯
,
x
n
]
:
∀
g
∈
J
,
∃
N
≥
0
,
f
g
N
∈
I
}
I:J^\infty = \{ f \in k[x_1,\cdots,x_n]: \forall g \in J,\,\exists N \ge 0,\,fg^N \in I\}
I:J∞={f∈k[x1,⋯,xn]:∀g∈J,∃N≥0,fgN∈I}
它是理想,并且满足:
- I ⊆ I : J ⊆ I : J ∞ I \subseteq I:J \subseteq I:J^\infty I⊆I:J⊆I:J∞
- 由于 J N + 1 ⊆ J N J^{N+1} \subseteq J^{N} JN+1⊆JN,那么 I : J N ⊆ I : J N + 1 I:J^N \subseteq I:J^{N+1} I:JN⊆I:JN+1,根据ACC,对于所有充分大的 N N N,有 I : J ∞ = I : J N I:J^\infty = I:J^N I:J∞=I:JN
- I : J ∞ = I : J \sqrt{I:J^\infty} = \sqrt{I}:J I:J∞=I:J
令 I , J I,J I,J是环 k [ x 1 , ⋯ , x n ] k[x_1,\cdots,x_n] k[x1,⋯,xn]的理想,那么
- V ( I ) = V ( I + J ) ∪ V ( I : J ∞ ) \pmb V(I) = \pmb V(I+J) \cup \pmb V(I:J^\infty) V(I)=V(I+J)∪V(I:J∞)
- V ( I ) \ V ( J ) ‾ ⊆ V ( I : J ∞ ) \overline{\pmb V(I) \backslash \pmb V(J)} \subseteq \pmb V(I:J^\infty) V(I)\V(J)⊆V(I:J∞)
- 如果 k k k是代数封闭的,那么 V ( I : J ∞ ) = V ( I ) \ V ( J ) ‾ \pmb V(I:J^\infty) = \overline{ \pmb V(I) \backslash \pmb V(J) } V(I:J∞)=V(I)\V(J)
- 如果 k k k是代数封闭的,且 I I I是根理想,那么 V ( I : J ) = V ( I ) \ V ( J ) ‾ \pmb V(I:J) = \overline{ \pmb V(I) \backslash \pmb V(J) } V(I:J)=V(I)\V(J)
- 对于任意域 k k k,簇 V , W ⊆ k n V,W \subseteq k^n V,W⊆kn,那么 I ( V ) : I ( W ) = I ( V \ W ) \pmb I(V): \pmb I(W) = \pmb I(V \backslash W) I(V):I(W)=I(V\W)
因此,只要 k k k是代数闭域,那么Zariski闭包 V ( I ) \ V ( J ) ‾ \overline{ \pmb V(I) \backslash \pmb V(J) } V(I)\V(J)是容易求的,它就是被理想 I : J ∞ I:J^\infty I:J∞定义的仿射簇。当 I I I还是根的,那么直接就是被理想商 I : J I:J I:J定义的仿射簇。
令 I , J I,J I,J是环 k [ x 1 , ⋯ , x n ] k[x_1,\cdots,x_n] k[x1,⋯,xn]的理想,那么
- I : k [ x 1 , ⋯ , x n ] = I : k [ x 1 , ⋯ , x n ] ∞ = I I:k[x_1,\cdots,x_n] = I:k[x_1,\cdots,x_n]^\infty = I I:k[x1,⋯,xn]=I:k[x1,⋯,xn]∞=I
- J ⊆ I ⟺ I : J = k [ x 1 , ⋯ , x n ] J \subseteq I \iff I:J = k[x_1,\cdots,x_n] J⊆I⟺I:J=k[x1,⋯,xn]
- J ⊆ I ⟺ I : J ∞ = k [ x 1 , ⋯ , x n ] J \subseteq \sqrt{I} \iff I:J^\infty = k[x_1,\cdots,x_n] J⊆I⟺I:J∞=k[x1,⋯,xn]
令
I
,
J
1
,
⋯
,
J
r
I,J_1,\cdots,J_r
I,J1,⋯,Jr是环
k
[
x
1
,
⋯
,
x
n
]
k[x_1,\cdots,x_n]
k[x1,⋯,xn]的理想,那么
I
:
(
∑
i
=
1
r
J
i
)
=
⋂
i
=
1
r
(
I
:
J
i
)
I:\left( \sum_{i=1}^r J_i \right) = \bigcap_{i=1}^r (I:J_i)
I:(i=1∑rJi)=i=1⋂r(I:Ji)
I : ( ∑ i = 1 r J i ) ∞ = ⋂ i = 1 r ( I : J i ∞ ) I:\left( \sum_{i=1}^r J_i \right)^\infty = \bigcap_{i=1}^r (I:J_i^\infty) I:(i=1∑rJi)∞=i=1⋂r(I:Ji∞)
令
I
1
,
⋯
,
I
r
,
J
I_1,\cdots,I_r,J
I1,⋯,Ir,J是环
k
[
x
1
,
⋯
,
x
n
]
k[x_1,\cdots,x_n]
k[x1,⋯,xn]的理想,那么
(
⋂
i
=
1
r
I
i
)
:
J
=
⋂
i
=
1
r
(
I
i
:
J
)
\left( \bigcap_{i=1}^r I_i \right):J = \bigcap_{i=1}^r (I_i:J)
(i=1⋂rIi):J=i=1⋂r(Ii:J)
( ⋂ i = 1 r I i ) : J ∞ = ⋂ i = 1 r ( I i : J ∞ ) \left( \bigcap_{i=1}^r I_i \right):J^\infty = \bigcap_{i=1}^r (I_i:J^\infty) (i=1⋂rIi):J∞=i=1⋂r(Ii:J∞)
令 I I I是环 k [ x 1 , ⋯ , x n ] k[x_1,\cdots,x_n] k[x1,⋯,xn]的理想, g g g是环元素,那么
-
如果 { h 1 , ⋯ , h p } \{h_1,\cdots,h_p\} {h1,⋯,hp}是理想 I ∩ < g > I \cap <g> I∩<g>的一组基,那么 { h 1 / g , ⋯ , h p / g } \{h_1/g,\cdots,h_p/g\} {h1/g,⋯,hp/g}是理想商 I : g I:g I:g的一组基
-
如果 { f 1 , ⋯ , f s } \{f_1,\cdots,f_s\} {f1,⋯,fs}是理想 I I I的一组基,令 I ~ = < f 1 , ⋯ , f s , 1 − y g > ⊆ k [ x 1 , ⋯ , x n , y ] \tilde I = <f_1,\cdots,f_s,1-yg> \subseteq k[x_1,\cdots,x_n,y] I~=<f1,⋯,fs,1−yg>⊆k[x1,⋯,xn,y],那么
I : g ∞ = I ~ ∩ k [ x 1 , ⋯ , x n ] I:g^\infty = \tilde I \cap k[x_1,\cdots,x_n] I:g∞=I~∩k[x1,⋯,xn]
algorithm for computing a basis of an ideal quotient:
- 给定理想 I = < f 1 , ⋯ , f r > I=<f_1,\cdots,f_r> I=<f1,⋯,fr>, J = < g 1 , ⋯ , g s > J=<g_1,\cdots,g_s> J=<g1,⋯,gs>,为了计算 I : J I:J I:J,首先计算 I : g i I:g_i I:gi
- 针对每个 i i i,利用algorithm for computing intersections of ideals,计算 I ∩ < g i > I \cap <g_i> I∩<gi>的一组基 { h 1 , ⋯ , h p } \{h_1,\cdots,h_p\} {h1,⋯,hp}
- 然后做除法, { h 1 / g i , ⋯ , h p / g i } \{h_1/g_i,\cdots,h_p/g_i\} {h1/gi,⋯,hp/gi}就是 I : g i I:g_i I:gi的一组基
- 继续利用algorithm for computing intersections of ideals,迭代 s − 1 s-1 s−1次,计算出 I : J = ( I : g 1 ) ∩ ⋯ ∩ ( I : g s ) I:J = (I:g_1) \cap \cdots \cap (I:g_s) I:J=(I:g1)∩⋯∩(I:gs)
algorithm for computing a basis of a saturation:
- 给定理想 I = < f 1 , ⋯ , f r > I=<f_1,\cdots,f_r> I=<f1,⋯,fr>, J = < g 1 , ⋯ , g s > J=<g_1,\cdots,g_s> J=<g1,⋯,gs>,为了计算 I : J ∞ I:J^\infty I:J∞,首先计算 I : g i ∞ I:g_i^\infty I:gi∞
- 针对每个 i i i,构造 I ~ = < f 1 , ⋯ , f s , 1 − y g i > \tilde I = <f_1,\cdots,f_s,1-yg_i> I~=<f1,⋯,fs,1−ygi>,计算它的一组Groebner基 G G G,字典序 y > x 1 > ⋯ > x n y>x_1>\cdots>x_n y>x1>⋯>xn
- 然后 G ′ = G ∩ k [ x 1 , ⋯ , x n ] G' = G \cap k[x_1,\cdots,x_n] G′=G∩k[x1,⋯,xn]就是 I : g i ∞ I:g_i^\infty I:gi∞的一组基
- 利用algorithm for computing intersections of ideals,迭代 s − 1 s-1 s−1次,计算出 I : J ∞ = ( I : g 1 ∞ ) ∩ ⋯ ∩ ( I : g s ∞ ) I:J^\infty = (I:g_1^\infty) \cap \cdots \cap (I:g_s^\infty) I:J∞=(I:g1∞)∩⋯∩(I:gs∞)
Irreducible Varieties
不可约簇、素理想
不可约簇:仿射簇 V ⊆ k n V \subseteq k^n V⊆kn是不可约的(Irreducible),如果 V = V 1 ∪ V 2 V = V_1 \cup V_2 V=V1∪V2,且 V 1 , V 2 V_1,V_2 V1,V2是仿射簇,那么 V 1 = V V_1=V V1=V或者 V 2 = V V_2=V V2=V
素理想:理想 I ⊆ k [ x 1 , ⋯ , x n ] I \subseteq k[x_1,\cdots,x_n] I⊆k[x1,⋯,xn]是素的(prime),如果 f g ∈ I fg \in I fg∈I,那么 f ∈ I f \in I f∈I或者 g ∈ I g \in I g∈I。容易验证,素理想都是根理想。
一个簇 V V V是不可约的 ⟺ \iff ⟺对于任意的簇 W ⊊ V W \subsetneq V W⊊V都有 V \ W ‾ = V \overline{V \backslash W} = V V\W=V,即 V \ W V \backslash W V\W是 V V V的Zariski稠密集。
对应关系:
- 仿射簇 V ⊆ k n V \subseteq k^n V⊆kn是不可约的 ⟺ I ( V ) \iff \pmb I(V) ⟺I(V)是素理想。
- 若 k k k是代数封闭的,那么 I \pmb I I和 V \pmb V V给出了不可约簇以及素理想之间的一一对应。
如果
k
k
k是无限域,簇
V
⊆
k
n
V \subseteq k^n
V⊆kn是 polynomial parametrization 定义的,
x
i
=
f
i
(
t
1
,
⋯
,
t
m
)
,
1
≤
i
≤
n
x_i = f_i(t_1,\cdots,t_m),\,\, 1 \le i \le n
xi=fi(t1,⋯,tm),1≤i≤n
其中
f
i
∈
k
[
t
1
,
⋯
,
t
m
]
f_i \in k[t_1,\cdots,t_m]
fi∈k[t1,⋯,tm],那么簇
V
V
V是不可约的。
proof:
首先定义函数
F
(
t
1
,
⋯
,
t
m
)
=
(
f
1
(
t
1
,
⋯
,
t
m
)
,
⋯
,
f
n
(
t
1
,
⋯
,
t
m
)
)
F(t_1,\cdots,t_m) = (f_1(t_1,\cdots,t_m),\cdots,f_n(t_1,\cdots,t_m))
F(t1,⋯,tm)=(f1(t1,⋯,tm),⋯,fn(t1,⋯,tm))
那么复合映射
g
∘
F
g \circ F
g∘F可以表示为“plugging the polynomials
f
i
f_i
fi into
g
g
g”,
g
∘
F
=
g
(
f
1
(
t
1
,
⋯
,
t
m
)
,
⋯
,
f
n
(
t
1
,
⋯
,
t
m
)
)
g \circ F = g(f_1(t_1,\cdots,t_m),\cdots,f_n(t_1,\cdots,t_m))
g∘F=g(f1(t1,⋯,tm),⋯,fn(t1,⋯,tm))
由于
k
k
k是无限的,那么
I
(
V
)
=
{
g
∈
k
[
x
1
,
⋯
,
x
n
]
:
g
∘
F
=
0
}
\pmb I(V) = \{ g \in k[x_1,\cdots,x_n]: g \circ F = 0 \}
I(V)={g∈k[x1,⋯,xn]:g∘F=0}
如果
g
h
∈
I
(
V
)
gh \in \pmb I(V)
gh∈I(V),那么
(
g
h
)
∘
F
=
(
g
∘
F
)
(
h
∘
F
)
=
0
(gh) \circ F = (g \circ F)(h \circ F) = 0
(gh)∘F=(g∘F)(h∘F)=0,无零因子环导致其中必然有一个因子为零,于是
g
∈
I
(
V
)
g \in \pmb I(V)
g∈I(V)或者
h
∈
I
(
V
)
h \in \pmb I(V)
h∈I(V),即
I
(
V
)
\pmb I(V)
I(V)是素理想,从而
V
V
V是不可约簇。
类似的,如果
k
k
k是无限域,簇
V
⊆
k
n
V \subseteq k^n
V⊆kn是 rational parametrization 定义的,
x
i
=
f
i
(
t
1
,
⋯
,
t
m
)
g
i
(
t
1
,
⋯
,
t
m
)
,
1
≤
i
≤
n
x_i = \dfrac{f_i(t_1,\cdots,t_m)}{g_i(t_1,\cdots,t_m)},\,\, 1 \le i \le n
xi=gi(t1,⋯,tm)fi(t1,⋯,tm),1≤i≤n
其中
f
i
,
g
i
∈
k
[
t
1
,
⋯
,
t
m
]
f_i,g_i \in k[t_1,\cdots,t_m]
fi,gi∈k[t1,⋯,tm],那么簇
V
V
V是不可约的。
单簇、极大理想
单簇:仿射簇 V ⊆ k n V \subseteq k^n V⊆kn是单的(simplest),如果它只包含一个点,即 V = { ( a 1 , ⋯ , a n ) } V = \{(a_1,\cdots,a_n)\} V={(a1,⋯,an)},可由常数参数多项式 f i ( t 1 , ⋯ , t m ) = a i f_i(t_1,\cdots,t_m)=a_i fi(t1,⋯,tm)=ai所定义。
极大理想:一个真的(proper)理想 I ⊆ k [ x 1 , ⋯ , x n ] I \subseteq k[x_1,\cdots,x_n] I⊆k[x1,⋯,xn]是极大的(maximal),如果任意的理想 J ⊇ I J \supseteq I J⊇I,要么 J = I J=I J=I要么 J = k [ x 1 , ⋯ , x n ] J=k[x_1,\cdots,x_n] J=k[x1,⋯,xn]。容易验证,极大理想都是素理想。
如果
k
k
k是任意域,理想
I
⊆
k
[
x
1
,
⋯
,
x
n
]
I \subseteq k[x_1,\cdots,x_n]
I⊆k[x1,⋯,xn]有如下形式
I
=
<
x
1
−
a
1
,
⋯
,
x
n
−
a
n
>
I = <x_1 - a_1,\cdots,x_n-a_n>
I=<x1−a1,⋯,xn−an>
其中
a
i
∈
k
a_i \in k
ai∈k,那么
I
I
I是极大理想。逆命题不成立。
如果
k
k
k是代数闭域,那么环
k
[
x
1
,
⋯
,
x
n
]
k[x_1,\cdots,x_n]
k[x1,⋯,xn]中任意的极大理想都有如下形式
I
=
<
x
1
−
a
1
,
⋯
,
x
n
−
a
n
>
I = <x_1 - a_1,\cdots,x_n-a_n>
I=<x1−a1,⋯,xn−an>
其中
a
i
∈
k
a_i \in k
ai∈k,这是上述逆命题。
对应关系:若 k k k是代数封闭的,那么 I \pmb I I和 V \pmb V V给出了 k n k^n kn上的单簇以及 k [ x 1 , ⋯ , x n ] k[x_1,\cdots,x_n] k[x1,⋯,xn]上的极大理想之间的一一对应。