代数几何:簇的分解、理想的分解

Decomposition of Variety

利用理想的升链条件(ACC),以及理想和簇的对应关系,可以容易得到如下条件。

The Descending Chain Condition(DCC):任意的仿射簇的递减序列
V 1 ⊇ V 2 ⊇ V 3 ⊇ ⋯ V_1 \supseteq V_2 \supseteq V_3 \supseteq \cdots V1V2V3
最终都会稳定(stabilize),即存在一个正整数 N N N,使得 V N = V N + 1 = ⋯ V_N = V_{N+1} = \cdots VN=VN+1=

V ⊆ k n V \subseteq k^n Vkn是仿射簇,那么它可以写作有限并集
V = V 1 ∪ V 2 ∪ ⋯ ∪ V m V = V_1 \cup V_2 \cup \cdots \cup V_m V=V1V2Vm
其中每个 V i V_i Vi都是不可约的簇

proof

假设 V V V无法写成有限个不可约簇的并集,那么 V V V本身是可约的,将它写作 V = V 1 ∪ V 1 ′ V = V_1 \cup V_1' V=V1V1,其中 V 1 ≠ V , V 1 ′ ≠ V V_1 \neq V,V_1' \neq V V1=V,V1=V

更进一步, V 1 , V 2 V_1,V_2 V1,V2中至少有一个依然不可以写成有限个不可约簇的并集。不失一般性的,令 V 1 V_1 V1不可以写成有限个不可约簇的并集。那么 V 1 V_1 V1本身是可约的,将它写作 V 1 = V 2 ∪ V 2 ′ V_1 = V_2 \cup V_2' V1=V2V2,其中 V 2 ≠ V , V 2 ′ ≠ V V_2 \neq V,V_2' \neq V V2=V,V2=V

继续迭代,我们得到了 V ⊇ V 1 ⊇ V 2 ⊇ ⋯ V \supseteq V_1 \supseteq V_2 \supseteq \cdots VV1V2,同时 V ≠ V 1 ≠ V 2 ≠ ⋯ V \neq V_1 \neq V_2 \neq \cdots V=V1=V2=,这不符合DCC,矛盾。

上述的分解不唯一,因为这些不可约簇可能会相互包含。下面排除掉相等的或者相包含的情况。

V ⊆ k n V \subseteq k^n Vkn是仿射簇,那么它可以写作有限并集:
V = V 1 ∪ V 2 ∪ ⋯ ∪ V m V = V_1 \cup V_2 \cup \cdots \cup V_m V=V1V2Vm
其中每个 V i V_i Vi都是不可约的簇,同时 V i ⊊ V j , ∀ i ≠ j V_i \subsetneq V_j,\forall i \neq j ViVj,i=j。这叫做最小分解(minimal decomposition),或者不可约并集(irredundant union),其中每个 V i V_i Vi叫做 V V V不可约分量(irreducible components)

对于任意的簇 V V V,不考虑 V i V_i Vi顺序,都存在唯一的最小分解。注意,这个“存在性”依赖于“有限并集”:例如仿射平面,可以写成单点(不可约簇)的并集,也可以写成一条仿射直线(不可约簇)和其他单点的并集。

V , W V,W V,W是簇,且 W ⊊ V W \subsetneq V WV,那么差 V \ W V \backslash W V\W V V V的Zariski稠密集    ⟺    W \iff W W中不含 V V V的不可约分量。

Decomposition of Radical Ideal

利用素理想和不可约簇的对应关系,可以给出根理想的分解。

k k k是代数闭域,那么环 k [ x 1 , ⋯   , x b ] k[x_1,\cdots,x_b] k[x1,,xb]上任意的根理想 I I I,都可以写成有限交集
I = P 1 ∩ P 2 ∩ ⋯ ∩ P r I = P_1 \cap P_2 \cap \cdots \cap P_r I=P1P2Pr
其中 P i P_i Pi都是素理想,且 P i ⊊ P j , ∀ i ≠ j P_i \subsetneq P_j,\forall i \neq j PiPj,i=j。这叫做最小分解(minimal decomposition),或者不可约交集(irredundant intersection)

k k k是代数闭域,给定环 k [ x 1 , ⋯   , x b ] k[x_1,\cdots,x_b] k[x1,,xb]上一个真根理想 I I I,写出它的最小分解 I = ⋂ i = 1 r P i I = \bigcap_{i=1}^r P_i I=i=1rPi,那么 P i P_i Pi恰好就是出现在集合
{ I : f ∣ f ∈ k [ x 1 , ⋯   , x n ] } \{I:f|f \in k[x_1,\cdots,x_n]\} {I:ffk[x1,,xn]}
里的那些真素理想

proof

由于 I I I是真理想,从而 P i P_i Pi都是真理想。

对于任意的 f ∈ k [ x 1 , ⋯   , x n ] f \in k[x_1,\cdots,x_n] fk[x1,,xn]
I : f = ( ⋂ i = 1 r P i ) : f = ⋂ i = 1 r ( P i : f ) I:f = (\bigcap_{i=1}^r P_i):f = \bigcap_{i=1}^r (P_i:f) I:f=(i=1rPi):f=i=1r(Pi:f)
可以证明,如果素理想 P = ⋂ i = 1 n I i P = \bigcap_{i=1}^n I_i P=i=1nIi,那么对于某些 i i i,有 P = I i P = I_i P=Ii

另外,对于素理想 P P P

  1. 如果 f ∈ P f \in P fP,那么 P : f = < 1 > P:f = <1> P:f=<1>
  2. 如果 f ∉ P f \notin P f/P,那么 P : f = P P:f = P P:f=P

假设 I : f I:f I:f是真的素理想,那么 ∃ i \exists i i 使得 I : f = P i : f I:f = P_i:f I:f=Pi:f,进而根据 I : f I:f I:f是真的,得到 I : f = P i I:f = P_i I:f=Pi

反之,对于任意的 P i P_i Pi,选取
f ∈ ( ⋂ j ≠ i r P j ) \ P i f \in (\bigcap_{j \neq i}^r P_j) \backslash P_i f(j=irPj)\Pi
那么 P i : f = P i P_i:f = P_i Pi:f=Pi,且 P j : f = < 1 > , ∀ j ≠ i P_j:f = <1>,\forall j \neq i Pj:f=<1>,j=i,因此 I : f = ⋂ i = 1 r ( P i : f ) = P i I:f = \bigcap_{i=1}^r (P_i:f) = P_i I:f=i=1r(Pi:f)=Pi

更进一步,对于如下的三个问题:

  1. Primality:判定一个理想是否是素的?
  2. Irreducibility:判定一个仿射簇是否是不可约的?
  3. Decomposition:如何找出簇和理想的最小分解?

上述的问题都有明确算法。对于代数封闭域,将仿射簇的问题转化为根理想的问题。判定簇 V V V是否不可约,转化为判断根理想 I ( V ) \pmb I(V) I(V)是否是素的,如果是素的,那么簇是不可约的。找出簇 V V V的最小分解,转化为寻找根理想 I ( V ) \pmb I(V) I(V)的最小分解,找到了分解 I = ⋂ i = 1 r P i I = \bigcap_{i=1}^r P_i I=i=1rPi后,那么就有 V = ⋃ i = 1 r V ( P i ) V = \bigcup_{i=1}^r \pmb V(P_i) V=i=1rV(Pi),其中的分量 V ( P i ) \pmb V(P_i) V(Pi)都是不可约的。

algorithm for finding the minimal decomposition of radical ideal:T. Becker, V. Weispfenning, Gröbner Bases (GTM 141), Chapter 8.

Primary Decomposition of Ideal

上一节给出了根理想的分解。下面讨论任意理想的分解。

一个理想 I ⊆ k [ x 1 , ⋯   , x n ] I \subseteq k[x_1,\cdots,x_n] Ik[x1,,xn]初等的(primary),如果 f g ∈ I fg \in I fgI,那么 f ∈ I f \in I fI或者 ∃ m ≥ 1 ,    g m ∈ I \exists m \ge 1,\,\,g^m \in I m1,gmI

容易看到,任意的素理想都是初等的,取 m = 1 m=1 m=1即可。

如果 I I I是初等理想,那么它的根 P = I P=\sqrt{I} P=I 包含 I I I的最小素理想,我们称 I I I是** P − P- P初等的**( P − P- Pprimary)

primary decomposition:对于任意理想 I ⊆ k [ x 1 , ⋯   , x n ] I \subseteq k[x_1,\cdots,x_n] Ik[x1,,xn],都可以写成有限交集
I = Q 1 ∩ Q 2 ∩ ⋯ ∩ Q r I = Q_1 \cap Q_2 \cap \cdots \cap Q_r I=Q1Q2Qr
其中 P i P_i Pi都是初等理想。如果 Q i \sqrt{Q_i} Qi 两两不同,且 Q i ⊉ ⋂ j ≠ i Q j Q_i \nsupseteq \bigcap_{j \neq i} Q_j Qij=iQj,那么叫做 minimal primary decomposition 或者 irredundant primary decomposition.

引理:

  1. 如果 I , J I,J I,J都是初等理想,且 I = J \sqrt{I} = \sqrt{J} I =J ,那么 I ∩ J I \cap J IJ是初等的。
  2. 如果 I I I是初等的, I = P \sqrt{I} = P I =P f ∈ k [ x 1 , ⋯   , x n ] f \in k[x_1,\cdots,x_n] fk[x1,,xn],那么
    1. f ∈ I f \in I fI,则 I : f = < 1 > I:f = <1> I:f=<1>
    2. f ∉ I f \notin I f/I,则 I : f I:f I:f P − P- P初等的
    3. f ∉ I f \notin I f/I,则 I : f = I I:f = I I:f=I

Lasker-Noether:任意的理想 I ⊆ k [ x 1 , ⋯   , x n ] I \subseteq k[x_1,\cdots,x_n] Ik[x1,,xn]都有最小初等分解。对于真理想 I I I的最小初等分解 I = ⋂ i = 1 r Q i I = \bigcap_{i=1}^r Q_i I=i=1rQi,令 P i = Q i P_i = \sqrt{Q_i} Pi=Qi ,那么 P i P_i Pi恰好就是集合
{ I : f ∣ f ∈ k [ x 1 , ⋯   , x n ] } \{ \sqrt{I:f} | f \in k[x_1,\cdots,x_n] \} {I:f fk[x1,,xn]}
中的那些真的素理想。

推论:对于真的根理想 I I I的最小初等分解 I = ⋂ i = 1 r Q i I = \bigcap_{i=1}^r Q_i I=i=1rQi,那么 Q i Q_i Qi恰好就是集合
{ I : f ∣ f ∈ k [ x 1 , ⋯   , x n ] } \{ I:f | f \in k[x_1,\cdots,x_n] \} {I:ffk[x1,,xn]}
中的那些真的素理想。

事实上,Lasker-Noether定理可以加强为: P i P_i Pi恰好就是集合 { I : f ∣ f ∈ k [ x 1 , ⋯   , x n ] } \{ I:f | f \in k[x_1,\cdots,x_n] \} {I:ffk[x1,,xn]}里的那些真的素理想。

最后,我们也可以证明,上述的最小初等分解是唯一的

更进一步,对于如下的两个问题:

  1. Primary Decomposition:如何计算一个理想 I I I的最小初等分解的各个初等理想 Q i Q_i Qi的一组基?
  2. Associated Primes:如何计算对应的素理想 P i = Q i P_i = \sqrt{Q_i} Pi=Qi 的一组基?

上述的问题也都有明确算法。

总结

在这里插入图片描述

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值