代数几何:仿射簇-理想的对应关系,理想的和、积、交

参考文献:Ideals, Varieties, and Algorithms (4th ed.) [Cox, Little & O’Shea 2015-06-14]

前置文章:仿射簇 和 Groebner基消元 和 扩展

Nullstellensatz

给定仿射簇 V ⊆ k n V \subseteq k^n Vkn,那么就可以写出一个理想:
I ( V ) = { f ∈ k [ x 1 , ⋯   , x n ] : f ( a ) = 0 , ∀ a ∈ V } \pmb I(V) = \{ f \in k[x_1,\cdots,x_n]: f(a)=0 ,\forall a \in V \} I(V)={fk[x1,,xn]:f(a)=0,aV}
给定理想 I ∈ k [ x 1 , ⋯   , x n ] I \in k[x_1,\cdots,x_n] Ik[x1,,xn],那么就可以写出一个仿射簇:
V ( I ) = { a ∈ k n : f ( a ) = 0 , ∀ f ∈ I } \pmb V(I) = \{ a \in k^n: f(a) = 0, \forall f \in I \} V(I)={akn:f(a)=0,fI}
然而,上述的对应关系不是一一的。例如,对于任意域 k k k < x > <x> <x> < x 2 > <x^2> <x2> k [ x ] k[x] k[x]上的不同的理想,但是它们的簇相同: V ( x ) = V ( x 2 ) = { 0 } \pmb V(x) = \pmb V(x^2) = \{0\} V(x)=V(x2)={0};又或者不是代数闭域的 R R R,那么 1 , 1 + x 2 , 1 + x 2 + x 4 1,1+x^2,1+x^2+x^4 1,1+x2,1+x2+x4都没有实数根,从而 V ( 1 ) = V ( 1 + x 2 ) = V ( 1 + x 2 + x 4 ) = ∅ \pmb V(1) = \pmb V(1+x^2) = \pmb V(1+x^2+x^4) = \empty V(1)=V(1+x2)=V(1+x2+x4)=

弱零点定理(The Weak Nullstellensatz):令 k k k是代数封闭域(algebraically closed field), I ∈ k [ x 1 , ⋯   , x n ] I \in k[x_1,\cdots,x_n] Ik[x1,,xn]是理想,它满足 V ( I ) = ∅ V(I)=\empty V(I)=,那么 I = k [ x 1 , ⋯   , x n ] I=k[x_1,\cdots,x_n] I=k[x1,,xn]

The original German name Nullstellensatz: a word formed, in typical German fashion, from three simpler words: Null (= Zero), Stellen (= Places), Satz (= Theorem).

也就是说,对于代数闭域,空簇和全空间一一对应。如果令 k = C k = C k=C,那么就是Fundamental Theorem of Algebra for multivariable polynomials:如果一组多项式生成了 C [ x 1 , ⋯   , x n ] C[x_1,\cdots,x_n] C[x1,,xn]中的真理想,那么它们一定在 C n C^n Cn内有公共零点。

consistency algorithm

  1. 给定代数闭域 k k k上的多项式组 f 1 , ⋯   , f s ∈ k [ x 1 , ⋯   , x n ] f_1,\cdots,f_s \in k[x_1,\cdots,x_n] f1,,fsk[x1,,xn],判断是否有解
  2. 首先计算理想 I = < f 1 , ⋯   , f s > I=<f_1,\cdots,f_s> I=<f1,,fs>的约化Groebner基,字典序任意
  3. 如果这组基是 { 1 } \{1\} {1},那么方程组没有公共零点
  4. 如果这组基不是 { 1 } \{1\} {1},那么方程组一定有至少一个公共零点

Hilbert零点定理(Hilbert’s Nullstellensatz):令 k k k是代数封闭域,对于 f , f 1 , ⋯   , f s ∈ k [ x 1 , ⋯   , x n ] f,f_1,\cdots,f_s \in k[x_1,\cdots,x_n] f,f1,,fsk[x1,,xn],那么
f ∈ I ( V ( f 1 , ⋯   , f s ) ) f \in \pmb I(\pmb V(f_1,\cdots,f_s)) fI(V(f1,,fs))
当仅当存在 m ∈ N + m \in N^+ mN+,使得
f m ∈ I : = < f 1 , ⋯   , f s > ⊆ k [ x 1 , ⋯   , x n ] f^m \in I := <f_1,\cdots,f_s> \subseteq k[x_1,\cdots,x_n] fmI:=<f1,,fs>⊆k[x1,,xn]
proof:

⇐ \Leftarrow ,由于 f m ∈ I f^m \in I fmI,那么 ( f m ) ( V ( I ) ) = 0 (f^m)(\pmb V(I))=0 (fm)(V(I))=0,这仅当 f ( V ( I ) ) = 0 f(\pmb V(I))=0 f(V(I))=0,于是 f ∈ I ( V ( I ) ) f \in \pmb I(\pmb V(I)) fI(V(I))

⇒ \Rightarrow ,我们巧妙地构造如下理想,
I ~ = < f 1 , ⋯   , f s , 1 − y f > ⊆ k [ x 1 , ⋯   , x n , y ] \tilde I = <f_1,\cdots,f_s,1-yf> \subseteq k[x_1,\cdots,x_n,y] I~=<f1,,fs,1yf>⊆k[x1,,xn,y]
对于点 ( a 1 , ⋯   , a n , a n + 1 ) ∈ k n + 1 (a_1,\cdots,a_n,a_{n+1}) \in k^{n+1} (a1,,an,an+1)kn+1,由于 f ∈ I ( V ( f 1 , ⋯   , f s ) ) f \in \pmb I(\pmb V(f_1,\cdots,f_s)) fI(V(f1,,fs))

  1. 如果 ( a 1 , ⋯   , a n ) ∈ V ( f 1 , ⋯   , f s ) (a_1,\cdots,a_n) \in \pmb V(f_1,\cdots,f_s) (a1,,an)V(f1,,fs),那么 f ( a 1 , ⋯   , a n ) = 0 f(a_1,\cdots,a_n)=0 f(a1,,an)=0,从而 1 − a n + 1 f ( a 1 , ⋯   , a n ) = 1 ≠ 0 1-a_{n+1}f(a_1,\cdots,a_n)=1 \neq 0 1an+1f(a1,,an)=1=0,因此 ( a 1 , ⋯   , a n , a n + 1 ) ∉ V ( I ~ ) (a_1,\cdots,a_n,a_{n+1}) \notin \pmb V(\tilde I) (a1,,an,an+1)/V(I~)
  2. 如果 ( a 1 , ⋯   , a n ) ∉ V ( f 1 , ⋯   , f s ) (a_1,\cdots,a_n) \notin \pmb V(f_1,\cdots,f_s) (a1,,an)/V(f1,,fs),那么存在 1 ≤ i ≤ s 1 \le i \le s 1is,使得 f i ( a 1 , ⋯   , a n ) ≠ 0 f_i(a_1,\cdots,a_n) \neq 0 fi(a1,,an)=0,于是 ( a 1 , ⋯   , a n , a n + 1 ) ∉ V ( I ~ ) (a_1,\cdots,a_n,a_{n+1}) \notin \pmb V(\tilde I) (a1,,an,an+1)/V(I~)

所以, V ( I ~ ) = ∅ \pmb V(\tilde I) = \empty V(I~)=,根据 the Weak Nullstellensatz, 1 ∈ I ~ 1 \in \tilde I 1I~
1 = ∑ i = 1 s p i ( x 1 , ⋯   , x n , y ) f i + q ( x 1 , ⋯   , x n , y ) ( 1 − y f ) 1 = \sum_{i=1}^s p_i(x_1,\cdots,x_n,y)f_i + q(x_1,\cdots,x_n,y)(1-yf) 1=i=1spi(x1,,xn,y)fi+q(x1,,xn,y)(1yf)
y = 1 / f y = 1/f y=1/f,那么
1 = ∑ i = 1 s p i ( x 1 , ⋯   , x n , 1 / f ) f i 1 = \sum_{i=1}^s p_i(x_1,\cdots,x_n,1/f)f_i 1=i=1spi(x1,,xn,1/f)fi
两边同乘 f m f^m fm m ∈ N + m \in N^+ mN+足够大,可以消去分母,那么就有
f m = ∑ i = 1 s ( p i ( x 1 , ⋯   , x n , 1 f ) ⋅ f m ) f i f^m = \sum_{i=1}^s \left( p_i\left(x_1,\cdots,x_n,\frac{1}{f}\right) \cdot f^m \right)f_i fm=i=1s(pi(x1,,xn,f1)fm)fi
因此, f m ∈ I f^m \in I fmI,证毕。

Ideal - Variety Correspondence

V V V是任意的仿射簇,如果对于某正整数 m m m,有 f m ∈ I ( V ) f^m \in \pmb I(V) fmI(V),那么 f ∈ I ( V ) f \in \pmb I(V) fI(V)。因为任意点 a ∈ V a \in V aV,有 ( f ( a ) ) m = 0 (f(a))^m = 0 (f(a))m=0,如果 f ( a ) ≠ 0 f(a) \neq 0 f(a)=0,那么矛盾。

根理想:理想 I I I根的(radical),它满足如果 ∃ m ≥ 1 , f m ∈ I \exist m\ge 1,f^m \in I m1,fmI则导致 f ∈ I f \in I fI。一个簇 V V V I ( V ) I(V) I(V)是根理想。

理想的根:令 I ⊆ k [ x 1 , ⋯   , x n ] I \subseteq k[x_1,\cdots,x_n] Ik[x1,,xn]是理想,定义它的根(radical of I I I):
I : = { f ∣ f m ∈ I , ∃ m ≥ 1 } \sqrt I := \{f | f^m \in I,\exist m \ge 1\} I :={ffmI,m1}
可以证明, I ⊆ I ⊆ k [ x 1 , ⋯   , x n ] I \subseteq \sqrt I \subseteq k[x_1,\cdots,x_n] II k[x1,,xn],它是根理想。

强零点定理(The Strong Nullstellensatz):令 k k k是代数封闭域, I ∈ k [ x 1 , ⋯   , x n ] I \in k[x_1,\cdots,x_n] Ik[x1,,xn]是理想,那么
I ( V ( I ) ) = I \pmb I(\pmb V(I))=\sqrt I I(V(I))=I
Ideal - Variety Correspondence:令 k k k是任意域,

  1. 映射
    I : a f f i n e    v a r i e t i e s → i d e a l s \pmb I: affine\,\,varieties \to ideals I:affinevarietiesideals

    V : i d e a l s → a f f i n e    v a r i e t i e s \pmb V: ideals \to affine\,\,varieties V:idealsaffinevarieties

    反包含的(inclusion-reversing)

    1. 如果 I 1 ⊆ I 2 I_1 \subseteq I_2 I1I2,那么 V ( I 1 ) ⊇ V ( I 2 ) \pmb V(I_1) \supseteq \pmb V(I_2) V(I1)V(I2)
    2. 如果 V 1 ⊆ V 2 V_1 \subseteq V_2 V1V2,那么 I ( V 1 ) ⊇ I ( V 2 ) \pmb I(V_1) \supseteq \pmb I(V_2) I(V1)I(V2)
  2. 对于任意的簇 V V V,都有
    V ( I ( V ) ) = V \pmb V(\pmb I(V)) = V V(I(V))=V
    I \pmb I I是双射

  3. 对于任意的理想 I I I,都有
    V ( I ) = V ( I ) \pmb V(\sqrt I) = \pmb V(I) V(I )=V(I)

    因此 V \pmb V V不是单射

  4. 如果 k k k是代数闭域,那么限制到根理想上的映射
    I : a f f i n e    v a r i e t i e s → r a d i c a l    i d e a l s \pmb I: affine\,\,varieties \to radical\,\,ideals I:affinevarietiesradicalideals

    V : r a d i c a l    i d e a l s → a f f i n e    v a r i e t i e s \pmb V: radical\,\,ideals \to affine\,\,varieties V:radicalidealsaffinevarieties

    反包含的双射(inclusion-reversing bijections),两者互为逆映射

因此,只要在代数闭域上工作,那么:

  1. 关于仿射簇的任意问题,都可以转化为关于根理想的代数(algebra)问题
  2. 关于根理想的任意问题,都可以转化为关于仿射簇的几何(geometry)问题

已知理想 I = < f 1 , ⋯   , f s > I = <f_1,\cdots,f_s> I=<f1,,fs>,有如下三个问题:

  1. Radical Generators:如何计算 I \sqrt I I 的一组基?
  2. Radical Ideal:如何判断 I I I是否是根理想?
  3. Radical Membership:给定 f ∈ k [ x 1 , ⋯   , x n ] f \in k[x_1,\cdots,x_n] fk[x1,,xn],如何判断 f ∈ I f \in \sqrt I fI 是否成立?
Radical Membership

k k k是任意域,理想
I = < f 1 , ⋯   , f s > ⊆ k [ x 1 , ⋯   , x n ] I = <f_1,\cdots,f_s> \subseteq k[x_1,\cdots,x_n] I=<f1,,fs>⊆k[x1,,xn]
给定某多项式 f ∈ k [ x 1 , ⋯   , x n ] f \in k[x_1,\cdots,x_n] fk[x1,,xn],构造理想
I ~ = < f 1 , ⋯   , f s , 1 − y f > ⊆ k [ y , x 1 , ⋯   , x n ] \tilde I = <f_1,\cdots,f_s,1-yf> \subseteq k[y,x_1,\cdots,x_n] I~=<f1,,fs,1yf>⊆k[y,x1,,xn]
利用 Hilbert’s Nullstellensatz 的证明过程,有
f ∈ I    ⟺    ∃ m ∈ N + , f m ∈ I    ⟺    1 ∈ I ~ f \in \sqrt I \iff \exists m \in N^+,f^m \in I \iff 1 \in \tilde I fI mN+,fmI1I~
radical membership algorithm

  1. 给定任意域 k k k上的理想 I = < f 1 , ⋯   , f s > I=<f_1,\cdots,f_s> I=<f1,,fs>,判断某多项式 f f f是否属于 I \sqrt I I
  2. 首先计算理想 I ~ = < f 1 , ⋯   , f s , 1 − y f > \tilde I = <f_1,\cdots,f_s,1-yf> I~=<f1,,fs,1yf>的约化Groebner基,字典序任意
  3. 如果这组基是 { 1 } \{1\} {1},那么 f ∈ I f \in \sqrt I fI
  4. 如果这组基不是 { 1 } \{1\} {1},那么那么 f ∉ I f \notin \sqrt I f/I
Radical Generators

f ∈ k [ x 1 , ⋯   , x n ] f \in k[x_1,\cdots,x_n] fk[x1,,xn],令 I = < f > I=<f> I=<f>主理想(principal ideal),假设 f = c f 1 e 1 f 2 e 2 ⋯ f r e r f = c f_1^{e_1} f_2^{e_2} \cdots f_r^{e_r} f=cf1e1f2e2frer是唯一素分解,那么
I = < f > = < f 1 f 2 ⋯ f r > \sqrt{I} = \sqrt{<f>} = <f_1f_2\cdots f_r> I =<f> =<f1f2fr>
它的根理想也是主理想,其生成元为 f r e d = f 1 f 2 ⋯ f r f_{red} = f_1f_2\cdots f_r fred=f1f2fr,叫做 f f f约化(reduction)。如果 f = f r e d f = f_{red} f=fred,那我们称 f f freduced 或者 square-free 的多项式。

如果域 k ⊇ Q k \supseteq \mathbb Q kQ,那么主理想 I = < f > I=<f> I=<f>的根为 I = < f r e d > \sqrt{I} = <f_{red}> I =<fred>,其中
f r e d = f G C D ( f , ∂ f ∂ x 1 , ⋯   , ∂ f ∂ x n ) f_{red} = \dfrac{f}{GCD(f, \frac{\partial f}{\partial x_1}, \cdots, \frac{\partial f}{\partial x_n})} fred=GCD(f,x1f,,xnf)f
可以利用后面介绍的理想的交来计算GCD,从而直接计算出 f r e d f_{red} fred,不必做困难的素分解。

Sums, Products, Intersections

理想的和

I , J I,J I,J是环 k [ x 1 , ⋯   , x n ] k[x_1,\cdots,x_n] k[x1,,xn]上的理想,那么它们的和(sum
I + J = { f + g : f ∈ I , g ∈ J } I+J = \{ f+g: f \in I,g \in J \} I+J={f+g:fI,gJ}

  • I + J I+J I+J是包含 I , J I,J I,J的最小理想。

  • 如果 I = < f 1 , ⋯   , f r > I=<f_1,\cdots,f_r> I=<f1,,fr> J = < g 1 , ⋯   , g s > J=<g_1,\cdots,g_s> J=<g1,,gs>,那么
    I + J = < f 1 , ⋯   , f r , g 1 , ⋯   , g s > ⊆ k [ x 1 , ⋯   , x n ] I+J = <f_1,\cdots,f_r,g_1,\cdots,g_s> \subseteq k[x_1,\cdots,x_n] I+J=<f1,,fr,g1,,gs>⊆k[x1,,xn]

  • 根据上述性质,可以推出:
    < f 1 , ⋯   , f r > = < f 1 > + ⋯ + < f r > <f_1,\cdots,f_r> = <f_1> + \cdots + <f_r> <f1,,fr>=<f1>++<fr>

    即环 k [ x 1 , ⋯   , x n ] k[x_1,\cdots,x_n] k[x1,,xn]中任意的理想(根据 Hilbert Basis Theorem 它们都是有限生成的),都可以分解为有限个主理想的和。

  • I , J I,J I,J是环 k [ x 1 , ⋯   , x n ] k[x_1,\cdots,x_n] k[x1,,xn]上的理想,那么
    V ( I + J ) = V ( I ) ∩ V ( J ) \pmb V(I+J) = \pmb V(I) \cap \pmb V(J) V(I+J)=V(I)V(J)
    任意的 a ∈ V ( I + J ) a \in \pmb V(I+J) aV(I+J),由于 I ⊆ I + J I \subseteq I+J II+J,从而 a ∈ V ( I ) a \in \pmb V(I) aV(I),同理有 a ∈ V ( J ) a \in \pmb V(J) aV(J),于是 V ( I + J ) ⊆ V ( I ) ∩ V ( J ) \pmb V(I+J) \subseteq \pmb V(I) \cap \pmb V(J) V(I+J)V(I)V(J)

    任意的 a ∈ V ( I ) ∩ V ( J ) a \in \pmb V(I) \cap \pmb V(J) aV(I)V(J),对于 h ∈ I + J h \in I+J hI+J,有 h = f + g , f ∈ I , g ∈ J h = f + g,f \in I,g \in J h=f+g,fI,gJ,那么 h ( a ) = f ( a ) + g ( a ) = 0 + 0 = 0 h(a) = f(a)+g(a) = 0+0=0 h(a)=f(a)+g(a)=0+0=0,因此 a ∈ ( I + J ) a \in \pmb(I+J) a(I+J),于是 V ( I + J ) ⊇ V ( I ) ∩ V ( J ) \pmb V(I+J) \supseteq \pmb V(I) \cap \pmb V(J) V(I+J)V(I)V(J)

理想的积

I , J I,J I,J是环 k [ x 1 , ⋯   , x n ] k[x_1,\cdots,x_n] k[x1,,xn]上的理想,那么它们的积(product
I ⋅ J = { f 1 g 1 + ⋯ + f r g r : f i ∈ I , g j ∈ J } I\cdot J = \{ f_1g_1 + \cdots + f_rg_r: f_i \in I,g_j \in J \} IJ={f1g1++frgr:fiI,gjJ}

  • I ⋅ J I \cdot J IJ是理想, I ⋅ J ⊆ I I\cdot J \subseteq I IJI I ⋅ J ⊆ J I\cdot J \subseteq J IJJ

  • 如果 I = < f 1 , ⋯   , f r > I=<f_1,\cdots,f_r> I=<f1,,fr> J = < g 1 , ⋯   , g s > J=<g_1,\cdots,g_s> J=<g1,,gs>,那么
    I ⋅ J = < f i g j : 1 ≤ i ≤ r , 1 ≤ j ≤ s > I \cdot J = <f_ig_j: 1 \le i \le r,1 \le j \le s> IJ=<figj:1ir,1js>

  • I , J I,J I,J是环 k [ x 1 , ⋯   , x n ] k[x_1,\cdots,x_n] k[x1,,xn]上的理想,那么
    V ( I ⋅ J ) = V ( I ) ∪ V ( J ) \pmb V(I\cdot J) = \pmb V(I) \cup \pmb V(J) V(IJ)=V(I)V(J)
    任意的 a ∈ V ( I ⋅ J ) a \in \pmb V(I \cdot J) aV(IJ),它使得 f ( a ) g ( a ) = 0 , ∀ f ∈ I , ∀ g ∈ J f(a)g(a)=0,\forall f \in I,\forall g \in J f(a)g(a)=0,fI,gJ,如果 ∃ g ∈ J , g ( a ) ≠ 0 \exists g \in J,g(a) \neq 0 gJ,g(a)=0,那么一定有 f ( a ) = 0 , ∀ f ∈ I f(a)=0,\forall f \in I f(a)=0,fI,从而 a ∈ V ( I ) a \in \pmb V(I) aV(I),反之亦然,于是 V ( I ⋅ J ) ⊆ V ( I ) ∪ V ( J ) \pmb V(I\cdot J) \subseteq \pmb V(I) \cup \pmb V(J) V(IJ)V(I)V(J)

    任意的 a ∈ V ( I ) ∪ V ( J ) a \in \pmb V(I) \cup \pmb V(J) aV(I)V(J),要么 f ( a ) = 0 , ∀ f ∈ I f(a)=0,\forall f \in I f(a)=0,fI,要么 g ( a ) = 0 , ∀ g ∈ J g(a)=0,\forall g \in J g(a)=0,gJ,所以 f ( a ) g ( a ) = 0 , ∀ f ∈ I , ∀ g ∈ J f(a)g(a)=0,\forall f \in I,\forall g \in J f(a)g(a)=0,fI,gJ,因此任意的 h ∈ I ⋅ J h \in I \cdot J hIJ,都有 h ( a ) = ∑ 0 = 0 h(a) = \sum 0 = 0 h(a)=0=0,从而 a ∈ V ( I ⋅ J ) a \in \pmb V(I \cdot J) aV(IJ),于是 V ( I ⋅ J ) ⊇ V ( I ) ∪ V ( J ) \pmb V(I\cdot J) \supseteq \pmb V(I) \cup \pmb V(J) V(IJ)V(I)V(J)

理想的交

I , J I,J I,J是环 k [ x 1 , ⋯   , x n ] k[x_1,\cdots,x_n] k[x1,,xn]上的理想,那么它们的交(intersection
I ∩ J = { f : f ∈ I , f ∈ J } I\cap J = \{ f: f \in I, f \in J \} IJ={f:fI,fJ}

  • I ∩ J I\cap J IJ是理想,且 I ⋅ J ⊆ I ∩ J I \cdot J \subseteq I \cap J IJIJ

  • I , J I,J I,J是环 k [ x 1 , ⋯   , x n ] k[x_1,\cdots,x_n] k[x1,,xn]上的理想,那么
    V ( I ∩ J ) = V ( I ) ∪ V ( J ) = V ( I ⋅ J ) \pmb V(I \cap J) = \pmb V(I) \cup \pmb V(J) = \pmb V(I \cdot J) V(IJ)=V(I)V(J)=V(IJ)
    由于 I ⋅ J ⊆ I ∩ J I \cdot J \subseteq I \cap J IJIJ,因此 V ( I ∩ J ) ⊆ V ( I ⋅ J ) = V ( I ) ∪ V ( J ) \pmb V(I \cap J) \subseteq \pmb V(I \cdot J) = \pmb V(I) \cup \pmb V(J) V(IJ)V(IJ)=V(I)V(J)

    任意的 a ∈ V ( I ) ∪ V ( J ) a \in \pmb V(I) \cup \pmb V(J) aV(I)V(J),要么 f ( a ) = 0 , ∀ f ∈ I f(a)=0,\forall f \in I f(a)=0,fI,要么 g ( a ) = 0 , ∀ g ∈ J g(a)=0,\forall g \in J g(a)=0,gJ,自然地对于任意的 h ∈ I ∩ J h \in I \cap J hIJ都有 h ( a ) = 0 h(a)=0 h(a)=0,从而 a ∈ V ( I ∩ J ) a \in \pmb V(I \cap J) aV(IJ),于是 V ( I ∩ J ) ⊇ V ( I ) ∪ V ( J ) \pmb V(I \cap J) \supseteq \pmb V(I) \cup \pmb V(J) V(IJ)V(I)V(J)

  • I , J I,J I,J是环 k [ x 1 , ⋯   , x n ] k[x_1,\cdots,x_n] k[x1,,xn]上的任意理想,那么
    I ∩ J = I ∩ J \sqrt{I \cap J} = \sqrt{I} \cap \sqrt{J} IJ =I J
    如果 f ∈ I ∩ J f \in \sqrt{I \cap J} fIJ ,那么 f m ∈ I ∩ J f^m \in I \cap J fmIJ,于是 f m ∈ I f^m \in I fmI,即 f ∈ I f \in \sqrt{I} fI ,同理可证 f ∈ J f \in \sqrt{J} fJ ,于是 I ∩ J ⊆ I ∩ J \sqrt{I \cap J} \subseteq \sqrt{I} \cap \sqrt{J} IJ I J

    如果 f ∈ I ∩ J f \in \sqrt{I} \cap \sqrt{J} fI J ,那么 f m ∈ I f^m \in I fmI f p ∈ J f^p \in J fpJ,那么 f m + p ∈ I ⋅ J ⊆ I ∩ J f^{m+p} \in I\cdot J \subseteq I \cap J fm+pIJIJ,因此 f ∈ I ∩ J f \in \sqrt{I \cap J} fIJ ,于是 I ∩ J ⊇ I ∩ J \sqrt{I \cap J} \supseteq \sqrt{I} \cap \sqrt{J} IJ I J

给定环 k [ x 1 , ⋯   , x n ] k[x_1,\cdots,x_n] k[x1,,xn]上的理想 I I I,以及环 k [ t ] k[t] k[t]上的多项式 f ( t ) f(t) f(t),定义环 k [ x 1 , ⋯   , x n , t ] k[x_1,\cdots,x_n,t] k[x1,,xn,t]上的理想
f ( t ) I : = < f ( t ) h ( x ) : h ( x ) ∈ I > f(t)I := <f(t)h(x): h(x) \in I> f(t)I:=<f(t)h(x):h(x)I>

  1. 对于 I = < f 1 , ⋯   , f s > I=<f_1,\cdots,f_s> I=<f1,,fs>,那么
    f ( t ) I = < f ( t ) f 1 ( x ) , ⋯   , f ( t ) f s ( x ) > f(t)I = <f(t)f_1(x),\cdots,f(t)f_s(x)> f(t)I=<f(t)f1(x),,f(t)fs(x)>

  2. 如果 g ( x , t ) ∈ f ( t ) I g(x,t) \in f(t)I g(x,t)f(t)I a ∈ k a \in k ak是任意的域元素,那么
    g ( x , a ) ∈ I g(x,a) \in I g(x,a)I

I , J I,J I,J是环 k [ x 1 , ⋯   , x n ] k[x_1,\cdots,x_n] k[x1,,xn]上的理想,那么它们的交可以表示为:
I ∩ J = ( t I + ( 1 − t ) J ) ∩ k [ x 1 , ⋯   , x n ] I \cap J = (tI + (1-t)J) \cap k[x_1,\cdots,x_n] IJ=(tI+(1t)J)k[x1,,xn]
algorithm for computing intersections of ideals

  1. 给定 I = < f 1 , ⋯   , f r > I=<f_1,\cdots,f_r> I=<f1,,fr> J = < g 1 , ⋯   . g s > J = <g_1,\cdots.g_s> J=<g1,.gs>,构造
    t I + ( 1 − t ) J = < t f 1 , ⋯   , t f r , ( 1 − t ) g 1 , ⋯   , ( 1 − t ) g s > tI + (1-t)J = <tf_1,\cdots,tf_r,(1-t)g_1,\cdots,(1-t)g_s> tI+(1t)J=<tf1,,tfr,(1t)g1,,(1t)gs>

  2. 字典序 t > x 1 > ⋯ > x n t>x_1>\cdots>x_n t>x1>>xn,计算它的Groebner基 G G G

  3. 集合 G ′ = G ∩ k [ x 1 , ⋯   , x n ] G' = G \cap k[x_1,\cdots,x_n] G=Gk[x1,,xn]是理想 I ∩ J I \cap J IJ的一组Groebner基

特别地,如果 I = < f > , J = < g > ⊆ k [ x 1 , ⋯   , x n ] I=<f>,J=<g> \subseteq k[x_1,\cdots,x_n] I=<f>,J=<g>⊆k[x1,,xn]是主理想,那么 I ∩ J I \cap J IJ也是主理想,且它的生成元为:
h = L C M ( f , g ) h = LCM(f,g) h=LCM(f,g)
algorithm for computing the least common multiple

  1. 为了计算 f , g ∈ k [ x 1 , ⋯   , x n ] f,g \in k[x_1,\cdots,x_n] f,gk[x1,,xn]的最小公倍数,构造理想 I = < f > , J = < g > I=<f>,J=<g> I=<f>,J=<g>
  2. 利用algorithm for computing intersections of ideals,计算 I ∩ J I \cap J IJ的任意一组Groebner基 G G G
  3. 由于 I ∩ J I \cap J IJ仍是主理想,那么任取 h ∈ G h \in G hG,都有 h = L C M ( f , g ) h = LCM(f,g) h=LCM(f,g)

algorithm for computing the greatest common divisor

  1. 为了计算 f , g ∈ k [ x 1 , ⋯   , x n ] f,g \in k[x_1,\cdots,x_n] f,gk[x1,,xn]的最大公因子,
  2. 利用algorithm for computing the least common multiple,计算出 h = L C M ( f , g ) h = LCM(f,g) h=LCM(f,g)
  3. 输出 G C D ( f , g ) = f ⋅ g h GCD(f,g) = \dfrac{f \cdot g}{h} GCD(f,g)=hfg

注意,欧几里得算法对于多变量多项式的GCD会失效!当然,上述算法的效率也不算高,实践中使用更高效的1993年 DAVENPORT, SIRET and TOURNIER 的算法。

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值