人形机器人具有模仿人类行为和形态的能力,可以胜任一些复杂、危险或单调的工作。除却在传统的工业生产线和仓储物流领域帮助解决劳动力短缺问题,在医疗、教育、家庭服务等多个领域人形机器人也具有巨大应用潜力。
然而,由于智能化水平仍有待提升,目前大部分人形机器人在适应新环境方面仍存在难度。前不久,来自加州大学伯克利分校的研究人员提出了使用序列建模和动作预测的Causal Transformer模型。该模型实现了让人形机器人可以在室内外各种环境中稳健行走,应对不同地形,甚至还能背个书包,提袋垃圾。
那么该模型具体是如何实现的呢?接下来一起和机器人大讲堂来深入看看吧!
▍学习人形运动
研究人员提出了一种创新的基于学习的人形运动方法,其核心是一个Transformer控制器。该控制器通过自回归的方式,根据过去的观察和动作历史来预测未来的动作。
我们假设,观察和行动的历史能够隐式地编码关于世界的信息。借助强大的Transformer模型,研究人员能够在测试时利用这些信息来动态调整模型的行为。
该控制器是一个因果 Transformer,通过从观察动作历史中对未来动作的自回归预测进行训练
例如,模型可以利用期望状态与实际状态的历史记录,来决定如何调整操作,以便更好地实现未来的状态。这种学习方式可以被视为一种上下文学习,即在不更新模型参数的情况下,改变模