突破性进展!加州大学伯克利分校提出Causal Transformer模型,实现人形机器人通过强化学习适应真实世界人形运动

加州大学伯克利分校的研究人员开发出CausalTransformer模型,使人形机器人能在复杂环境中稳健行走,通过学习和自回归预测改善适应性。模型在大规模模拟环境中训练,展示了在现实世界中的强大适应性和鲁棒性,预示着机器人在医疗、教育等领域广泛应用的可能性。
摘要由CSDN通过智能技术生成

人形机器人具有模仿人类行为和形态的能力,可以胜任一些复杂、危险或单调的工作。除却在传统的工业生产线和仓储物流领域帮助解决劳动力短缺问题,在医疗、教育、家庭服务等多个领域人形机器人也具有巨大应用潜力。

然而,由于智能化水平仍有待提升,目前大部分人形机器人在适应新环境方面仍存在难度。前不久,来自加州大学伯克利分校的研究人员提出了使用序列建模和动作预测的Causal Transformer模型。该模型实现了让人形机器人可以在室内外各种环境中稳健行走,应对不同地形,甚至还能背个书包,提袋垃圾。

在这里插入图片描述

那么该模型具体是如何实现的呢?接下来一起和机器人大讲堂来深入看看吧!

▍学习人形运动

研究人员提出了一种创新的基于学习的人形运动方法,其核心是一个Transformer控制器。该控制器通过自回归的方式,根据过去的观察和动作历史来预测未来的动作。

我们假设,观察和行动的历史能够隐式地编码关于世界的信息。借助强大的Transformer模型,研究人员能够在测试时利用这些信息来动态调整模型的行为。
在这里插入图片描述

该控制器是一个因果 Transformer,通过从观察动作历史中对未来动作的自回归预测进行训练

例如,模型可以利用期望状态与实际状态的历史记录,来决定如何调整操作,以便更好地实现未来的状态。这种学习方式可以被视为一种上下文学习,即在不更新模型参数的情况下,改变模

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值