正交向量与正交化

数学 专栏收录该内容
3 篇文章 0 订阅

线性相关

定义

  • 定义1:在向量空间 V V V 的一组向量 A A A α 1 , α 2 , ⋯ α m \alpha_{1},\alpha_{2},\cdots \alpha_{m} α1,α2,αm,如果存在不全为零的数 k 1 , k 2 , ⋯ k m k_{1},k_{2},\cdots k_{m} k1,k2,km ,使 k 1 α 1 + k 2 α 2 + ⋯ + k m α m = 0 k_{1}\alpha_{1}+k_{2}\alpha_{2}+\cdots +k_{m}\alpha_{m}=0 k1α1+k2α2++kmαm=0 则称向量组 A A A 是线性相关的,否则,称其为线性无关的。
  • 定义2:当且仅当 α 1 , α 2 , ⋯ α m \alpha_{1},\alpha_{2},\cdots \alpha_{m} α1,α2,αm 全为零时,使得使 k 1 α 1 + k 2 α 2 + ⋯ + k m α m = 0 k_{1}\alpha_{1}+k_{2}\alpha_{2}+\cdots +k_{m}\alpha_{m}=0 k1α1+k2α2++kmαm=0 成立,称向量组线性无关。

定理

  1. 两个向量 a a a b b b 共线的充要条件是 a a a b b b 线性相关;
  2. 三个向量 a a a b b b c c c 共面的充要条件是 a a a b b b c c c 线性相关;
  3. 向量 a 1 , a 2 , ⋅ ⋅ ⋅ , a n ( n ⩾ 2 ) a_1,a_2, ···,a_n (n\geqslant 2) a1,a2,,an(n2) 线性相关的充要条件是这 n n n 个向量中的一个为其余 ( n − 1 ) (n-1) (n1) 个向量的线性组合,即有 a n a_n an ,且存在数域K中一组数 k 1 , k 2 , ⋯ k m k_{1},k_{2},\cdots k_{m} k1,k2,km ,满足 a n = k 1 a 1 + k 2 a 2 + ⋯ + k n − 1 a n − 1 a_n = k_1a_1+k_2a_2 + \cdots +k_{n-1}a_{n-1} an=k1a1+k2a2++kn1an1

注意

  1. 对于任一向量组而言,,不是线性无关的就是线性相关的;
  2. 包含零向量的任何向量组是线性相关的;
  3. 含有相互平行的向量的向量组必线性相关;
  4. 向量组是线性相关的,那么增加向量的个数,不改变向量的相关性。【局部相关,整体相关】
  5. 向量组是线性无关的,那么减少向量的个数,不改变向量的无关性。【整体无关,局部无关】

正交向量

通常,两个向量垂直的充分必要条件是它们夹角的余弦为零,亦即它们的数量积为零。在一般的欧式空间中,仍以内积定义两向量夹角的余弦。

定义:如果对于欧式空间中的两个向量 x x x y y y ( x , y ) = 0 (x,y)=0 (x,y)=0 ,则称 x x x y y y 正交垂直 ,记为 x ⊥ y x\perp y xy

结论:

  1. x x x y y y 正交时, y y y x x x 也正交;
  2. 零向量与任意向量均正交;
  3. 如果 x ⊥ y x\perp y xy ,且 x x x y y y 线性相关,则此二向量中至少有一个是零向量。

定义:如果欧式空间中一组非零向量两两正交,则称为正交向量组。

定理:设 x 1 , x 2 , ⋯ x m x_{1},x_{2},\cdots x_{m} x1,x2,xm 是正交向量组,则它们必线性无关。

上述定理可以表明,在 n n n 维欧式空间中,两两正交的非零向量不能超过 n n n 个。例如,在平面上找不到三个两两正交的非零向量;在通常的三维空间 R 3 R^3 R3 中,找不到四个两两正交的非零向量。

正交基

定义:在欧式空间 V n V^n Vn 中,由 n n n 个非零向量组成的正交向量组称为 V n V^n Vn正交基 ;由单位向量组成的正交基称为 标准正交基法正交基 ;其基向量称为 单位坐标向量

一个基为标准正交基的 充要条件 是它的度量矩阵为单位矩阵。

证明:设 x 1 , x 2 , ⋯ x n x_{1},x_{2},\cdots x_{n} x1,x2,xn 为标准正交基,则由定义有 ( x i , x j ) = x i T x j = { 1  if  i = j 0  if  i ≠ j \left ( x_{i},x_{j} \right )=x_{i}^{T}x_{j}=\begin{cases} 1 & \text{ if } i=j \\ 0 & \text{ if } i\neq j \end{cases} (xi,xj)=xiTxj={10 if i=j if i=j 可见 ,它的度量矩阵是单位矩阵。反之,如果以单位矩阵为度量矩阵,则由矩阵相等可得 ( x i , x j ) = x i T x j \left ( x_{i},x_{j} \right )=x_{i}^{T}x_{j} (xi,xj)=xiTxj ,即 x 1 , x 2 , ⋯ x n x_{1},x_{2},\cdots x_{n} x1,x2,xn 为标准正交基。

正交化

定理:对于欧式空间 V n V^n Vn 的任一基 x 1 , x 2 , ⋯ x n x_{1},x_{2},\cdots x_{n} x1,x2,xn ,都可以找到一个标准正交基 y 1 , y 2 , ⋯ y n y_{1},y_{2},\cdots y_{n} y1,y2,yn 。换言之,任一非零欧式空间都有正交基和标准正交基。

这个正交基我们可以通过Gram-Schmidt正交化获得。

Gram-Schmidt正交化方法是将 线性无关 的向量转化为 标准正交化向量 的方法。注意这里的前提,Gram-Schmidt正交化方法是对线性无关的向量操作。

假设欧式空间 V n V^n Vn 中的任一基为 x 1 , x 2 , ⋯ x n x_{1},x_{2},\cdots x_{n} x1,x2,xn ,我们通过Gram-Schmidt正交化方法得到该基的正交基和标准正交基。

  1. β 1 = x 1 \beta_{1}=x_1 β1=x1 ,作所求正交基中的第一个向量。
  2. β 2 = x 2 + k β 1 \beta_{2}=x_2+k\beta_{1} β2=x2+kβ1 ,由于我们要构造的正交基两两向量相互正交,有 ( β 1 , β 2 ) = 0 (\beta_{1},\beta_{2})=0 (β1,β2)=0 ,通过这个条件来计算待定常数 k k k
  3. ( β 1 , x 2 + k β 1 ) = ( β 1 , x 2 ) + k ( β 1 , β 1 ) = 0 (\beta_{1},x_2+k\beta_{1})=(\beta_{1},x_2)+k(\beta_{1},\beta_{1})=0 (β1,x2+kβ1)=(β1,x2)+k(β1,β1)=0 k = − ( x 2 , β 1 ) ( β 1 , β 1 ) k=-\frac{(x_2,\beta _{1})}{(\beta _{1},\beta _{1})} k=(β1,β1)(x2,β1) 代入 β 2 = x 2 + k β 1 \beta_{2}=x_2+k\beta_{1} β2=x2+kβ1 ,这样就得到两个相互正交的向量 β 1 \beta_{1} β1 β 2 \beta_{2} β2,且 β 2 ≠ 0 \beta_{2} \neq 0 β2=0
  4. β 3 = x 3 + k 2 β 2 + k 1 β 1 \beta_{3}=x_3+k_2\beta_{2}+k_1\beta_{1} β3=x3+k2β2+k1β1 ,再由正交条件 ( β 1 , β 3 ) = 0 (\beta_{1},\beta_{3})=0 (β1,β3)=0 ( β 2 , β 3 ) = 0 (\beta_{2},\beta_{3})=0 (β2,β3)=0 来决定出常数 k 1 k_1 k1 k 2 k_2 k2 k 2 = − ( x 3 , β 2 ) ( β 2 , β 2 ) , k 1 = − ( x 3 , β 1 ) ( β 1 , β 1 ) k_2=-\frac{(x_3,\beta _{2})}{(\beta _{2},\beta _{2})},k_1=-\frac{(x_3,\beta _{1})}{(\beta _{1},\beta _{1})} k2=(β2,β2)(x3,β2),k1=(β1,β1)(x3,β1)
  5. 以此类推,继续进行下去,直到最后一个向量。

上述获得的向量组 ( β 1 , β 2 , ⋯   , β n ) (\beta _{1},\beta _{2},\cdots ,\beta _{n}) (β1,β2,,βn) 即为欧式空间 V n V^n Vn 中的一个 正交基 。再将各向量单位化,即除以各自的模,得到单位正交向量组 y 1 , y 2 , ⋯ y n y_{1},y_{2},\cdots y_{n} y1,y2,yn,也即 标准正交基
y i = β i ∣ β i ∣ , i = 1 , 2 , . . . , n y_{i}=\frac{\beta_i}{\left | \beta _{i} \right |},i=1,2,...,n yi=βiβi,i=1,2,...,n 由基 x 1 , x 2 , ⋯ x n x_{1},x_{2},\cdots x_{n} x1,x2,xn 求标准正交基 y 1 , y 2 , ⋯ y n y_{1},y_{2},\cdots y_{n} y1,y2,yn 的过程也称把基 x 1 , x 2 , ⋯ x n x_{1},x_{2},\cdots x_{n} x1,x2,xn 正交单位化正交规范化

为简单起见,以包含四个向量的向量组为例,介绍Schmidt正交化的具体过程。假设向量组为 x 1 = ( 1 , 1 , 0 , 0 ) x_{1}=\left ( 1,1,0,0 \right ) x1=(1,1,0,0) x 2 = ( 1 , 0 , 1 , 0 ) x_{2}=\left ( 1,0,1,0 \right ) x2=(1,0,1,0) x 3 = ( − 1 , 0 , 0 , 1 ) x_{3}=\left ( -1,0,0,1 \right ) x3=(1,0,0,1) x 4 = ( 1 , − 1 , − 1 , 1 ) x_{4}=\left ( 1,-1,-1,1 \right ) x4=(1,1,1,1) ,求解其标准正交基。

:首先先把它们正交化。
β 1 = x 1 = ( 1 , 1 , 0 , 0 ) \beta_{1}=x_1=\left ( 1,1,0,0 \right ) β1=x1=(1,1,0,0)
β 2 = x 2 + k β 1 \beta_{2}=x_2+k\beta_{1} β2=x2+kβ1 ,常数 k k k k = − ( x 2 , β 1 ) ( β 1 , β 1 ) = − 1 2 k=-\frac{(x_2,\beta _{1})}{(\beta _{1},\beta _{1})}=-\frac{1}{2} k=(β1,β1)(x2,β1)=21,则
β 2 = x 2 + k β 1 = ( 1 , 0 , 1 , 0 ) − 1 2 ( 1 , 1 , 0 , 0 ) = ( 1 2 , − 1 2 , 1 , 0 ) \begin{aligned} \beta_{2}&=x_2+k\beta_{1} \\ &=\left ( 1,0,1,0 \right )-\frac{1}{2}\left ( 1,1,0,0 \right )\\ &=(\frac{1}{2},-\frac{1}{2},1,0) \end{aligned} β2=x2+kβ1=(1,0,1,0)21(1,1,0,0)=(21,21,1,0)

β 3 = x 3 + k 2 β 2 + k 1 β 1 \beta_{3}=x_3+k_2\beta_{2}+k_1\beta_{1} β3=x3+k2β2+k1β1 ,常数 k 1 k_1 k1 k 2 k_2 k2 k 1 = − ( x 3 , β 1 ) ( β 1 , β 1 ) = 1 2 , k 2 = − ( x 3 , β 2 ) ( β 2 , β 2 ) = − − 1 / 2 3 / 2 = 1 3 k_1=-\frac{(x_3,\beta _{1})}{(\beta _{1},\beta _{1})}=\frac{1}{2},k_2=-\frac{(x_3,\beta _{2})}{(\beta _{2},\beta _{2})}=-\frac{-1/2}{3/2}=\frac{1}{3} k1=(β1,β1)(x3,β1)=21,k2=(β2,β2)(x3,β2)=3/21/2=31, 则
β 3 = x 3 + k 2 β 2 + k 1 β 1 = ( − 1 , 0 , 0 , 1 ) + 1 3 ( 1 2 , − 1 2 , 1 , 0 ) + 1 2 ( 1 , 1 , 0 , 0 ) = ( − 1 3 , 1 3 , 1 3 , 1 ) \begin{aligned} \beta_{3} &= x_3+k_2\beta_{2}+k_1\beta_{1}\\ &= \left ( -1,0,0,1 \right )+\frac{1}{3}(\frac{1}{2},-\frac{1}{2},1,0)+\frac{1}{2}\left ( 1,1,0,0 \right )\\ &= (-\frac{1}{3},\frac{1}{3},\frac{1}{3},1) \end{aligned} β3=x3+k2β2+k1β1=(1,0,0,1)+31(21,21,1,0)+21(1,1,0,0)=(31,31,31,1)

β 4 = x 4 + k 3 β 3 + k 2 β 2 + k 1 β 1 \beta_{4}=x_4+k_3\beta_{3}+k_2\beta_{2}+k_1\beta_{1} β4=x4+k3β3+k2β2+k1β1 ,常数 k 1 k_1 k1 k 2 k_2 k2 k 1 = − ( x 4 , β 1 ) ( β 1 , β 1 ) = 0 , k 2 = − ( x 4 , β 2 ) ( β 2 , β 2 ) = 0 , k 3 = − ( x 4 , β 3 ) ( β 3 , β 3 ) = 0 k_1=-\frac{(x_4,\beta _{1})}{(\beta _{1},\beta _{1})}=0,k_2=-\frac{(x_4,\beta _{2})}{(\beta _{2},\beta _{2})}=0,k_3=-\frac{(x_4,\beta _{3})}{(\beta _{3},\beta _{3})}=0 k1=(β1,β1)(x4,β1)=0,k2=(β2,β2)(x4,β2)=0k3=(β3,β3)(x4,β3)=0, 则 β 4 = x 4 + k 3 β 3 + k 2 β 2 + k 1 β 1 = ( 1 , − 1 , − 1 , 1 ) \beta_{4}=x_4+k_3\beta_{3}+k_2\beta_{2}+k_1\beta_{1}= ( 1,-1,-1,1 ) β4=x4+k3β3+k2β2+k1β1=(1,1,1,1)

再单位化,便有
y 1 = β 1 ∣ β 1 ∣ = 1 2 β 1 = ( 1 2 , 1 2 , 0 , 0 ) y_{1}=\frac{\beta_1}{\left | \beta _{1} \right |}=\frac{1}{\sqrt{2}}\beta _{1}=(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0,0) y1=β1β1=2 1β1=(2 1,2 1,0,0) y 2 = β 2 ∣ β 2 ∣ = 2 6 β 2 = ( 1 6 , − 1 6 , 2 6 , 0 ) y_{2}=\frac{\beta_2}{\left | \beta _{2} \right |}=\frac{2}{\sqrt{6}}\beta _{2}=(\frac{1}{\sqrt{6}},-\frac{1}{\sqrt{6}},\frac{2}{\sqrt{6}},0) y2=β2β2=6 2β2=(6 1,6 1,6 2,0) y 3 = β 3 ∣ β 3 ∣ = 3 2 β 3 = ( − 1 12 , 1 12 , 1 12 , 3 12 ) y_{3}=\frac{\beta_3}{\left | \beta _{3} \right |}=\frac{\sqrt{3}}{2}\beta _{3}=(-\frac{1}{\sqrt{12}},\frac{1}{\sqrt{12}},\frac{1}{\sqrt{12}},\frac{3}{\sqrt{12}}) y3=β3β3=23 β3=(12 1,12 1,12 1,12 3) y 4 = β 4 ∣ β 4 ∣ = 1 2 β 4 = ( 1 2 , − 1 2 , − 1 2 , 1 2 ) y_{4}=\frac{\beta_4}{\left | \beta _{4} \right |}=\frac{1}{2}\beta _{4}=(\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}) y4=β4β4=21β4=(21,21,21,21)

  • 2
    点赞
  • 1
    评论
  • 5
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 1024 设计师:白松林 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值