NSCT 保姆级教程—NSCT工具箱免费下载


传统的小波变换各向同性,只具有有限个方向,且存在采样操作,缺乏平移不变性,不能很好地表示图像中的边缘方向等信息

2002年,MN Do和Martin Vetterli提出了一种“真正”的图像二维表示方法:Contourlet变换(轮廓波变换),也称塔型方向滤波器组(Pyramidal Directional Filter Bank, PDFB).Contourlet变换是利用拉普拉斯塔形分解(LP)和方向滤波器组(DFB)实现的另一种多分辨的、局域的、方向的图像表示方法.值得注意的是,由于多尺度分解的不完全性,低频部分仍旧会保留图像的部分细节信息,这种现象在分解层数较少时尤为突出.

Nonsubsampled Contourlet变换算法介绍:
对信号的稀疏表示是许多信号处理及应用的基础,2004年Minh N Do、Martin Vetterli提出了一种能够较好表示二维信号的数学工具–Contourlet变换。Contourlet是用金字塔方向滤波器组(PDFB)来将图像分解成不同尺度下的方向子带的。根据PDFB的结构,PDFB是一个拉普拉斯金字塔滤波器Laplacian Pyramid (LP)和一个方向滤波器组的叠加。实验证明,Contourlet变换在图像降噪,纹理,形状的特征提取方面的性能比2-D离散小波变换有了明显的提高。

为了获得平移不变性,本章所用的Nonsubsampled Contourlet变换(NSCT)是基于Nonsubsampled金字塔(NSP)和Nonsubsampled方向滤波器(NSDFB)的一种变换。首先由NSP对输入图像进行塔形分解,分解为高通和低通两个部分,然后由NSDFB将高频子带分解为多个方向子带,低频部分继续进行如上分解。NSCT是一种新型平移不变,多尺度,多方向性的快速变换。

  1. Nonsubsampled Pyramid(NSP):
    Nonsubsampled Pyramid(NSP)和Contourlet的Laplacian Pyramid(LP)多尺度分析特性不同。图像通过Nonsubsampled Pyramid(NSP)进行多尺度分解,NSP去除了下采样,减少了采样在滤波器中的失真,获得了平移不变性。NSP为具有平移不变性滤波结构的NSCT多尺度分析,可以得到与LP分解一样的多尺度分析特性。图2.4(a)处分为3个尺度。
  2. Nonsubsampled方向滤波器(NSDFB)
    Nonsubsampled方向滤波器(NSDFB)是一个双通道的滤波器,将分布在同方向的奇异点合成NSCT的系数。方向滤波器(DFB)是Bamberger and Smith提出的。其通过一个l层的树状结构的分解,有效的将信号分成了 个子带,其频带分割成为锲形。Nonsubsampled DFB(NSDFB)为非采样,减少了采样在滤波器中的失真,获得了平移不变性。并且每个尺度下的方向子图的的大小都和原图同样大小,Contourlet变换为所有子带之和等于原图。NSCT有更多的细节得以保留,变换系数是冗余的。图2.4(b)为三个尺度下对图像频域的分割图,其中每个尺度的方向子带数目以2倍递增,以在1,2,3尺度下的方向子带数目分别为2,4,8个。
    在这里插入图片描述

转载:
https://blog.csdn.net/Chaolei3/article/details/88666487

图像金字塔

高斯金字塔(Gaussianpyramid): 用来向下采样,主要的图像金字塔
拉普拉斯金字塔(Laplacianpyramid): 用来从金字塔低层图像重建上层未采样图像,在数字图像处理中也即是预测残差,可以对图像进行最大程度的还原,配合高斯金字塔一起使用。

参考
图像金字塔,就是由原图像产生的一系列图像,尺寸可以比原图像大,也可以比原图像小,然后按尺寸大小从下到上一层一层堆叠,像个金字塔一样,层数越高,尺寸越小。相邻两层尺寸大小一般是2倍关系。

在这里插入图片描述

高斯金字塔实现下采样

高斯金字塔模仿的是图像的不同的尺度,尺度应该怎样理解?对于一副图像,你近距离观察图像,与你在一米之外观察,看到的图像效果是不同的,前者比较清晰,后者比较模糊,前者比较大,后者比较小,通过前者能看到图像的一些细节信息,通过后者能看到图像的一些轮廓的信息,这就是图像的尺度。
在这里插入图片描述

实现:

将原始图像当作金子塔的最底层;然后进行按图像长宽各减少二分之一进行下采样下采样就是由高分辨率变成低分辨率)。 操作一次一个 MxN 的图像就变成了一个 M/2xN/2 的图像。所以这幅图像的面积就变为原来图像面积的四分之一。
从第i层(低层)得到第i计1层(高层)的步骤:(从下往上数)
1.第i层的图像与高斯核做卷积(即掩码操作)
2.卷积后得到的图像去除偶数行和偶数列即得到第i+1层
下面展示一些 内联代码片

cv2.pyrDown()
cv2.pyrDown() 从一个高分辨率大尺寸的图像向上构建一个金字塔(尺寸变小,分辨率降低)

cv2.pyrDown(src, dst=None, dstsize=None, borderType=None)

import cv2
img = cv2.imread("1.jpg")#1920*1080
img1 = cv2.pyrDown(img, dstsize=(960, 540))
img2 = cv2.pyrDown(img1, dstsize=(480, 270
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

烟雨金城

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值