基于集成深度学习模型(EDLM)的蛋白质-蛋白质相互作用(PPI)位点识别方法(EDLMPPI)

文章介绍了一种名为EDLMPPI的新方法,它利用集成深度学习模型来识别蛋白质-蛋白质相互作用的位点。这种方法在处理数据不平衡问题上有所改进,并在多个基准数据集上表现出优越性能。EDLMPPI结合了深度记忆胶囊网络和非对称bagging算法,提高了预测的准确性和泛化性,尤其在预测蛋白质结构域中的PPIs时效果显著。
摘要由CSDN通过智能技术生成

期刊:communications biology
中科院分区:1区
影像因子:6.548
Github: https://github.com/houzl3416/EDLMPPI

摘要

  1. 蛋白质-蛋白质相互作用(PPIs)通过显著影响蛋白质的功能表达来控制细胞通路和过程。因此,准确识别蛋白质-蛋白质相互作用结合位点已成为蛋白质功能分析的关键步骤。
  2. 现有问题:大多数计算方法都是基于生物特征,数据不平衡。
  3. 本文开发了一种基于集成深度学习模型(EDLM)的蛋白质-蛋白质相互作用(PPI)位点识别方法(EDLMPPI)。在Dset_448、Dset_72和Dset_164三个广泛使用的基准数据集上都优于现有方法。

背景

蛋白质相互作用通过显著影响蛋白质功能表达来控制细胞细胞通路和过程,目前已经存在一些方法用于解决蛋白质相互作用和相关位点。
出了大量的蛋白质序列编码方法来将蛋白质序列建模为特征矩阵。蛋白质相互作用位点的单热编码是一种非常有效的方法,已被用于许多计算方法。然而,它们不能准确地表达氨基酸之间的功能差异。位置特定评分矩阵(Position-specific scoring matrix, PSSM)经常被用于序列级和残差级预测任务,由于PSSM需要对大型数据库的序列进行比对,因此相对耗时。为了应对不平衡数据集的影响,我们训练多个深度学习模型来形成集成深度学习,然后进行预测。

数据集

对于数据集,我们收集了三个广泛使用的基准数据集,Dset_186, Dset_72和Dset_164。Dset_186由PDB数据库构建,包含186个蛋白序列,分辨率<3.0 Å,序列同源性<25%。该数据集经过多个步骤的细化,包括去除具有相同UniprotKB/Swiss-Prot序列的链,去除跨膜蛋白,去除二聚体结构,去除表面可达性和界面极性埋藏在一定范围内的蛋白质,以及去除相似性。Dset_72和Dset_164的构建方法与Dset_186相同,分别由72个和186个蛋白质序列组成。
Dset_1291是来自BioLip数据库的数据集,如果一个残基的一个原子和一个给定蛋白质伙伴的原子之间的距离为0.5 Å加上两个原子的范德华半径之和,则定义了一个结合位点。。
最后使用Dset_843 (Dset_1291中的843个序列)来训练我们的模型,其余448个序列(Dset_448)作为独立的测试集。

方法

1f0a285141659c0145de8f1d812ad410.png
深度记忆胶囊网络扩展了传统记忆网络的并行性,将它们与不同的输出大小连接起来,以捕获不同深度尺度上氨基酸之间的相关性。此外,胶囊结构可以进一步挖掘特征之间的内在联系,保留样本之间的位置信息。此外,为了提高模型的泛化性和稳定性,我们引入了非对称bagging算法来解决样本间高度不平衡的问题。
v2-a4e833e7d130c7222ba423c87320340b_1440w.png

结合域

蛋白质结合域分析。蛋白质结构域与蛋白质生理功能的完成密切相关,是蛋白质细胞功能的结构基础。为了深入了解蛋白质结构域和蛋白质-蛋白质相互作用位点之间的潜在关系,我们进行了一个实验来验证EDLMPPI是否能准确预测蛋白质结构域中的PPIs。我们利用Pfam对Dset_448数据集中的448个蛋白质序列进行注释,去除重叠的结构域,最终得到501个结构域。图3b显示了每个尺寸的结构域与其中ppi数量的对应关系,我们比较了EDLMPPI、DELPHI和SCRIBER13的预测结果。此外,为了增强实验的合理性,我们增加了一个对照组:从序列中随机选取一个与蛋白质结构域大小相同的片段。从结果来看,EDLMPPI的预测结果比其他两种方法更为乐观,随着结构域的增大,EDLMPPI预测的PPIs数量增加。根据之前的一项研究52,长度偏差结构域超家族具有高度相互作用,功能更加混合,并受多种蛋白质调控,这支持了EDLMPPI预测蛋白质功能的合理性。此外,我们计算了EDLMPPI、DELPHI和SCRIBER对每个结构域估计的预测PPIs的比例,并计算了与真实比例向量的Pearson相关系数。EDLMPPI与原生注释的相关性最高,得分为0.70,而DELPHI、SCRIBER和对照组的相关性分别为0.63、0.57和0.21。
image.png

源码简介 EDLM自助售卡平台源码是采用php+mysql进行开发的24小时自动售卡平台! 重要的是站长的收款账号无需签约,无需企业认证无需费率,直接入账!安全稳定。 网站全开源无加密,免费提供学习!!!二开请保留版权尊重作者的付出,谢谢! 搭建教学:https://v.qq.com/x/page/h05364y32lz.html 服务端演示:https://v.qq.com/x/page/q05366zotl9.html 本系统为免费程序,请不要用于商业用途!!! 网站搭建须知 1.更换网站目录中的 pay/img/zfb.jpg 收款二维码图片为自己的。 2.新建一个空的数据库将网站目录中的kmxt.sql 导入。 3.配置网站目录中的config.php 数据库配置。 4.修改后台文件,将网站目录的 admin.php 文件 文件名修改掉,比如 123.php。 5.完成基本配置,上传网站程序到服务器即可。 默认后台登陆地址:域名+/admin.php 默认账号:admin 默认密码:123456 挂服务端须知 1.按情况修改config.ini中的配置信息。 2.设置登录文件,默认为域名+/cc.php。需要改名的请按自己网站的文件名修改! 3.以管理员身份运行服务端,如有杀毒软件拦截请“信任”。 4.输入登录管理员后台信息,点击登陆,登陆完成! 5.待登陆窗口出现后,选择扫码登陆,然后使用自助提卡系统上的收款二维码对应的收款支付宝账号扫码登陆。 6.扫码登陆后服务端就会正常运行。 2.2更新内容: 1.付款方式全面更新,再度美化,自动识别付款是否成功,5秒内跳转! 2.新增商品说明,让商品名称从此简洁 3.增加一键安装系统程序,3秒完成建站 4.后台新增添加商品说明功能 5.新增批量删除卡密功能 6.一些代码上的优化 7.各种网站小优化 8.免费版最后一次更新,免费开源学习,剩下的靠各位大佬了!需要体验原汁原味技术的,请购买商业版!
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值