GhostNet: MoreFeaturesfromCheapOperations
(一)论文及代码地址:
https://arxiv.org/abs/1911.11907
https://github.com/huawei-noah/ghostnet
(二)核心思想:
作者为了进一步压缩 CNN 网络结构,提出了一个 Ghost module,其核心是通过简单的线性变换,在内在特征图的基础上,生成更多可以完全揭示内在特征信息的幽灵👻特征图(ghost feature map),从而以较小的计算代价生成更多特征;
作者提出的 Ghost module 可以看作一个即插即用组件,用于升级现有的卷积神经网络,其核心是在输出通道数不变的情况下,减小卷积层的通道数并采用一个线性变换来升维,以此减小参数;
同时作者也提出了一个 Ghost Bottleneck 模块用来堆叠 Ghost module,并以此构建了一个新的网络 GhostNet,实现了 75.7% top-1 准确率,在比 MobileNetV3 准