【MobileNet V3】《Searching for MobileNetV3》

本文介绍了MobileNetV3的设计,它在MobileNetV2的基础上融合了SE模块、hard-swish激活函数和改进的网络结构。实验表明,新模型在分类、检测和分割任务中实现了速度与精度的双赢,达到了帕累托最优状态。
摘要由CSDN通过智能技术生成

在这里插入图片描述

在这里插入图片描述

ICCV-2019



1 Background and Motivation

【MobileNet】《MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications》(CVPR-2017)

【MobileNet V2】《MobileNetV2:Inverted Residuals and Linear Bottlenecks》(CVPR-2018)

deliver the next generation of high accuracy efficient neural network models to power on-device computer vision

2 Related Work

  • 手动设计网络
    reducing the number of parameters -> reducing the number of operations (MAdds) -> reducing the actual measured latency

  • NAS
    cell level -> block level

  • Quantization

  • knowledge distillation

3 Advantages / Contributions

NAS + 手动设计组装成 mobilenet v3 backbone,提出了 hard swish 激活函数(swish 改进版),提出了 Lite R-ASPP 分割头(R-ASPP 改进版),在分类、目标检测、分割数据集上速度和精度均有提升

4 Method

1)Network Search

  1. Platform-Aware NAS for Blockwise Search(来自 MnastNet,稍微修改了一下 reward design 的权重)

  2. NetAdapt for Layerwise Search
    search per layer for the number of filters
    maximizes △ A c c △ l a t e n c y \frac{\bigtriangleup Acc}{\bigtriangleup latency} latencyAcc

2)Network Improvements

  1. Redesigning Expensive Layers

    search 后的网络头尾比较重,进行了优化

    头部

    channels 32 + ReLU or swish 减小到了 channels 16 + hard swish

    尾部
    figure 5

  2. Nonlinearities
    在这里插入图片描述

    s w i s h ( x ) = x ⋅ σ ( x ) swish(x) = x \cdot \sigma(x) swish(x)=xσ(x)

    swish activation function 虽然提升了网络精度,但对硬件部署不够友好,增加了计算时间,作者采取了如下的改进(piece-wise linear)

    h − s w i s h ( x ) = x R e L U 6 ( x + 3 ) 6 h-swish(x) = x \frac{ReLU6(x+3)}{6} hswish(x)=x6ReLU6(x+3)

    比 relu 慢的

    only use h-swish at the second half of the model(we find that most of the benefits swish are realized by using them only in the deeper layers)

  3. Large squeeze-and-excite
    在这里插入图片描述

    v3 相比于 v2,采用了 SE 模块,SE 里面的 sigmoid 也是采用的 hard 形式,也即 R e L U 6 ( x + 3 ) 6 \frac{ReLU6(x+3)}{6} 6ReLU6(x+3)

    在这里插入图片描述

    作者把 SE 模块中的 squeeze fc 固定成 block 中 expand 通道数的 1/4(图 4 红√ 处)

    no discernible latency cost

  4. MobileNetV3 Definitions

在这里插入图片描述
图片来自 轻量级骨架首选:MobileNetV3完全解析
在这里插入图片描述 在这里插入图片描述

5 Experiments

use single-threaded large core in all our measurements

5.1 Datasets

  • ImageNet
  • COCO
  • Cityscapes

5.2 Classification

f1 左上角最好在这里插入图片描述
左上角最好

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

1)Impact of non-linearities
t5
这里的 112 看的不是特别懂,N 越大按道理用的 h-swish 越多,速度要慢一些,怎么还快了

2)Impact of other components
在这里插入图片描述

5.3 Detection

t6

mAP 离谱,哈哈

5.4 Segmentation

R-ASPP 基础上改进
在这里插入图片描述

t7 t8
在这里插入图片描述

6 Conclusion(own) / Future work

  • Pareto-optimal,帕累托最优(来自百度百科)

    帕累托最优(Pareto Optimality),也称为帕累托效率(Pareto efficiency),是指资源分配的一种理想状态,假定固有的一群人和可分配的资源,从一种分配状态到另一种状态的变化中,在没有使任何人境况变坏的前提下,使得至少一个人变得更好,这就是帕累托改进或帕累托最优化。
    帕累托最优状态就是不可能再有更多的帕累托改进的余地;换句话说,帕累托改进是达到帕累托最优的路径和方法。 帕累托最优是公平与效率的“理想王国”。是由帕累托提出的。

  • MobileNet V3 = MobileNet v2 + SE + hard-swish activation + half initial layers channel & last block do global average pooling first(来自 盖肉特别慌

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值