FDTD_谐振腔的Q值计算
传送门,官网链接
(官网有两个文件包,大家可以下载)
一、关于Q的一些简单介绍:
Q因子有两种:低Q腔和高Q腔:
(1)2D和3D文件中的腔体(都有2种模式,即有两种不同的谐振频率);
(2)2D中包含高Q分析对象和低Q分析对象,3D中只有标准分析对象;
(因为3D的腔中的质量因子Q相对于低Q…过高;enen…这个我觉得是在3D谐振腔中,较多数情况下,电磁波在规定的仿真时间都不会衰减完…)
二、低Q腔:
①介绍:
当FDTD仿真中:
电磁场,若在仿真时间内完全衰减,这样的腔为低Q腔:
(你看他这个腔体,仿真区域是平面…也就是默认在z方向上,结构无限长…)
②公式:
对于低Q对象(电磁波可以完全衰减的腔体),通过设置分析组(时间监视器),在仿真结束后对其“傅里叶频谱”进行分析;找到fR和FWHM…就可以算出其Q值;
(the quality factor can be determined from the Fourier transform of the field by finding the resonance frequencies of the signal and measuring the full width half maximum (FWHM) of the resonant peaks.);
公式:fR是各个模式的“谐振频率”(频谱上),FWHM(谐振峰的最大半高宽)
③结果图:
analysis:(分析组会给3幅图;1.衰减图 2.傅里叶频谱图 3.q值图)
(官方给的2D实例中的低Q分析组)
1.衰减图:
可以看见…电磁波在仿真时间结束时,已经衰减完了(低Q腔)
2.傅里叶频谱图(时间监视点的傅里叶变化…)
从中可以看见,fR(谐振频率峰值);FWHM(最大半峰高宽度);两个模式两个峰…
3.计算的q值图
这是计算的Q值和dQ;坐标值x为不同λ,y为Q值的大小;Q随λ,均匀变化…
三、高Q腔:
①介绍:
当FDTD仿真中:
电磁场,若在仿真时间内不会完全衰减,这样的腔为高Q腔:
SO…这个时候的Q就没法用上边的方法去算了;因为你的“电磁波”没衰减完,你的FWHM是受到仿真时间(Tsim)限制的;(FWHM ~ 1/Tsim);
②公式:
这样一来,找到另外一种方法求解这个Q值;enen…就是这个公式:(利用电磁波的衰减包络线,去求解Q)
其中的fR是谐振频率,m是衰减包络线的斜率;
下面有关这个公式的一大段推导:
1.谐振腔的Q值,本来的定义式:
ωr是谐振频率(ωr = 2πfR),FWHM是最大半峰高宽度;
2.谐振的时间域信号:
(α是衰减常数)
3.E(t)的傅里叶变换:
可以看见这个最大值在ω = ωr 时取到,最大值为1/α2;当ω = ωr +α 或者 ω = ωr -α 的时候,得到半峰值宽度FWHM = 2α;
4.这个值带回1中,得到下式:
建立了α和Q的关系;
5.下面建立时间信号衰减的斜率m,和Q的关系:
(对时域信号取对数log,才会建立起线性的关系)
最终得到:
Example:
计算这个高Q微腔的Q质量因子十分的复杂:
· 当这些场是真实值的时候,你用正弦信号去刻画其包络线的时候,十分困难;
· 如果存在很多的“谐振频率”的时候,它们在时间域上相互干扰,衰减速率很难估计;
打开了Q因子分析组的“编辑对话”窗口,分析组解决了这些问题:(感觉应该是官方写的Scripts)
· 精确的计算了这些时域场信号的包络;
· 用高斯滤波滤波器分离了每一个谐振频率峰,在频率域,然后用逆傅里叶变换,就算每个峰的时间衰减.
时间衰减的斜率,会用于计算Q因子,和包含一个错误估计;
③结果图:
analysis:(分析组会给4幅图;1.衰减图 2.傅里叶频谱图 3.斜率图 4.q值图)
(官方给的3D实例中的Q分析组)
1.“电磁场”的衰减图:
(每个场分量的衰减,和它们的包络线;注意并不是所有的场到仿真时间衰减都衰减完;这上面只画了“Ey”的特写)
2.傅里叶频谱图:
两个不同的“谐振”峰;
高斯滤波,将不同的“谐振峰”滤出来,这个只把频率在fR = 178处的保留,228处的滤掉;通过高斯滤波操作,和反傅里叶变换的操作,将它们各自的是时间衰减;
3.包络线衰减斜率图:
4.q值图:
这是计算的Q值和dQ;坐标值x为不同λ,y为Q值的大小;Q随λ,均匀变化…