超参数调参代码解释

RandomizedSearchCV用于在给定参数空间内进行随机搜索,寻找最佳参数设置。param_distributions定义了参数分布,如max_depth、max_features、min_samples_split和criterion。n_iter_search指定搜索迭代次数,cv为交叉验证的折数。该方法在机器学习中用于优化模型性能。
摘要由CSDN通过智能技术生成

源码


param_dist = {"max_depth": [3, 5],
              "max_features": randint(1, 11),
              "min_samples_split": randint(2, 11),
              "criterion": ["gini", "entropy"]}
n_iter_search = 20
random_search = RandomizedSearchCV(RFC, param_distributions=param_dist, n_iter=n_iter_search, cv=5)参数解释

解释

以下是对RandomizedSearchCV中使用的参数的解释:

  1. param_distributions:参数空间的分布或列表。可以是字典,其中键是参数名称,值是对应的参数值的分布。也可以是列表,其中元素是字典,每个字典表示一个参数设置。对于分布,可以使用以下选项:

    • 离散分布:直接指定参数的可能值。
    • 连续分布:使用支持的概率分布函数(例如scipy.stats模块中的函数)指定参数的分布。
  2. n_iter:随机搜索的迭代次数。指定要尝试的参数设置的数量。

  3. cv:交叉验证的折数。用于评估每个参数设置的性能。

  4. estimator:要拟合的估计器对象。在此处为RandomForestClassifier

通过使用RandomizedSearchCV,您可以在给定参数空间内随机搜索参数的组合,以找到最佳的参数设置。算法将根据指定的迭代次数和交叉验证折数进行多次拟合和评估,最终返回性能最佳的参数设置。

在给定的示例中,param_dist指定了以下参数的搜索空间:

  • max_depth:决策树的最大深度,可以是3或5。
  • max_features:每个决策树考虑的最大特征数量,从1到10之间随机选择。
  • min_samples_split:拆分内部节点所需的最小样本数,从2到10之间随机选择。
  • criterion:评估分割质量的准则,可以是"gini"或"entropy"。

n_iter_search指定了随机搜索的迭代次数。cv=5表示使用5折交叉验证进行模型评估。

希望这解释了RandomizedSearchCV中使用的参数及其含义。如果您还有其他疑问,请随时提问。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

王摇摆

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值