你提到的是 ROC 曲线和 AUC。
ROC 曲线(Receiver Operating Characteristic Curve):
ROC 曲线是一种用于评估分类模型性能的图形工具。它以真正例率(True Positive Rate,也叫灵敏度)为纵轴,假正例率(False Positive Rate,也叫误报率)为横轴,通常用于二分类问题。
-
真正例率(TPR):又称为灵敏度、召回率(Recall),表示实际为正例的样本中,模型成功预测为正例的比例。计算公式为:TPR = TP / (TP + FN)。
-
假正例率(FPR):表示实际为负例的样本中,模型错误预测为正例的比例。计算公式为:FPR = FP / (FP + TN)。
ROC 曲线通过在不同的分类阈值下绘制 TPR 和 FPR 曲线,可以帮助我们理解模型在不同阈值下的性能表现。
AUC(Area Under the Curve):
AUC 是 ROC 曲线下方的面积,用于衡量分类模型的性能。AUC 的取值范围在 0 到 1 之间,数值越大表示模型的性能越好。
- AUC = 1:完美分类器,能够将所有正例排在所有负例前面。
- AUC = 0.5:随机分类器,性能和随机猜测相当。
- AUC < 0.5:分类器性能差于随机猜测。
AUC 通常用于比较不同模型的性能,一个具有更高 AUC 值的模型通常被认为在不同阈值下的分类效果更好。
总的来说,ROC 曲线和 AUC 是评估分类模型性能的重要指标。ROC 曲线提供了对模型在不同阈值下的分类表现的直观认识,而 AUC 则是一个单一的数值指标,用于比较模型的性能。