ROC AOC

TPR
= TP / (TP + FN)
即所有真实类别为1的样本中,预测类别为1的比例
也就是召回率(是正例,预测也为正例)

FPR
= FP / (FP + TN)
即所有真实类别为0的样本中,预测类别为1的比例

ROC曲线
横坐标为FPR,纵坐标为TPR

先看:
https://blog.csdn.net/ye1215172385/article/details/79448575
再看:
https://blog.csdn.net/YE1215172385/article/details/79443552

随机挑选一个标签为0的样本A,再随机挑选一个标签为1的样本B。你预测样本B为1的概率大于样本A为1的概率的概率就是你的ROC AUC。比较拗口,多念几遍,就通顺了

计算置信区间的公式:[1] [2]
在这里插入图片描述
其中,
N1 : 事实为正例的数目
N2 : 事实为负例的数目 见[2]

记住,公式算出来的是标准差segma(也就是SE),为了95%的置信区间还需要乘以一个前面的系数z,若z=2即取两倍标准差,详见:
https://www.jianshu.com/p/9d05d11d6cb1
则认为落在区间的概率为95%

参考文献:
[1] The meaning and use of the area under a receiver operating characteristic (ROC) curve.
[2] Confidence Intervals for the Area Under the ROC Curve

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值