配置anaconda+CUDA+cudnn+pycharm深度学习环境

配置anaconda+CUDA+cudnn+pycharm深度学习环境

使用anaconda配置pycharm虚拟环境

为什么要使用anaconda配置虚拟环境?可以根据不同项目需求配置对应的环境,互不影响。

  • 安装时到这一步注意选择第一项“添加环境变量”,否则需要手动添加。
    在这里插入图片描述
    win+R打开cmd,输入:conda --version
    显示以下conda版本信息则说明安装成功了
    在这里插入图片描述

  • 开始栏菜单搜索Anaconda Prompt,打开,使用如下命令创建虚拟环境(env):
    其中RF为想要创建的环境名称,python=3.9表示对应的python版本

conda create -n RF python=3.9

在这里插入图片描述

创建结束后可以再Anaconda3/envs下找到RF文件夹
在这里插入图片描述

  • 打开pycharm2023(以该版本为例),点击file-settings请添加图片描述
    在这里插入图片描述
    load conda环境,先选择scripts下的conda.exe——load environment——选择创建的RF环境
    在这里插入图片描述
    在这里插入图片描述
    之后即可在interpreter中选择使用RF环境
    在这里插入图片描述
  • 如何在anaconda环境中安装库
    打开Anaconda Prompt,进入对应环境
activate RF
pip install scikit-learn
安装和配置Anaconda3、PyCharmCUDA 10.1、cuDNN 7.6和TensorFlow 2.2的步骤如下: 1. 首先,下载并安装Anaconda3。访问Anaconda官方网站,并下载适合您操作系统的安装程序。运行安装程序,按照提示进行安装。 2. 安装完成后,打开终端或命令提示符,并创建一个新的Anaconda环境。运行以下命令: ``` conda create -n env_name python=3.7 ``` 将"env_name"替换为您想要的环境名称。 3. 激活新创建的环境。运行以下命令: ``` conda activate env_name ``` 4. 下载并安装PyCharm。访问JetBrains官方网站,下载适合您操作系统的PyCharm安装程序。运行安装程序,按照提示进行安装。 5. 下载并安装CUDA 10.1。访问NVIDIA官方网站,下载与您的显卡和操作系统兼容的CUDA 10.1安装程序。运行安装程序,按照提示进行安装。 6. 下载并安装cuDNN 7.6。访问NVIDIA官方网站,并下载与您的CUDA版本和操作系统兼容的cuDNN 7.6库。将cuDNN文件解压缩到CUDA的安装目录中。 7. 配置PyCharm以使用Anaconda环境。打开PyCharm并导航到"Settings" > "Project Interpreter"。单击右上角的设置图标,并选择"Add"。在打开的窗口中,选择"Conda Environment" > "Existing environment"。在"Interpreter"字段中,选择Anaconda环境的路径。 8. 在PyCharm中安装TensorFlow 2.2。返回"Settings" > "Project Interpreter",并单击右下角的"+"按钮。在搜索栏中输入"tensorflow",并选择TensorFlow包。单击"Install"按钮,完成安装。 9. 现在,您已成功安装和配置Anaconda3、PyCharmCUDA 10.1、cuDNN 7.6和TensorFlow 2.2。您可以开始使用TensorFlow进行深度学习任务。 请注意,安装和配置步骤可能因操作系统和版本而异。建议在查找和安装这些软件时参考官方文档和教程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值