模式识别学习笔记-lecture2-统计判别1

作为统计判别问题的模式分类

  • 模式识别的目的就是要确定某一个给定的模式样本属于哪一类
  • 输入:被识别对象的特征向量
  • 输出:被识别样本的类别

贝叶斯判别原则

两类模式集的分类

  • 目的:要确定 x x x是属于 ω 1 \omega_1 ω1类还是 ω 2 \omega_2 ω2类,要看 x x x是来自于 ω 1 \omega_1 ω1类的概率大还是来自 ω 2 \omega_2 ω2类的概率大。

根据概率判别规则,有:
P ( ω 1 ∣ x ) > P ( ω 2 ∣ x ) P(\omega_1|x) \gt P(\omega_2|x) P(ω1x)>P(ω2x),则 x ∈ ω 1 x \in \omega_1 xω1
P ( ω 1 ∣ x ) < P ( ω 2 ∣ x ) P(\omega_1|x) \lt P(\omega_2|x) P(ω1x)<P(ω2x),则 x ∈ ω 2 x \in \omega_2 xω2
由贝叶斯定理,后验概率 P ( ω i ∣ x ) P(\omega_i|x) P(ωix)可由类别 ω i \omega_i ωi的先验概率 P ( ω i ) P(\omega_i) P(ωi) x x x的条件概率密度 P ( x ∣ ω i ) P(x|\omega_i) P(xωi)来计算,即:
P ( ω i ∣ x ) = P ( x ∣ ω i ) P ( ω i ) P ( x ) = P ( x ∣ ω i ) P ( ω i ) ∑ i = 1 2 P ( x ∣ ω i ) P ( ω i ) P(\omega_i|x)=\frac{P(x|\omega_i)P(\omega_i)}{P(x)}=\frac{P(x|\omega_i)P(\omega_i)}{\sum_{i=1}^2{P(x|\omega_i)P(\omega_i)}} P(ωix)=P(x)P(xωi)P(ωi)=i=12P(xωi)P(ωi)P(xωi)P(ωi)
这里 P ( x ∣ ω i ) P(x|\omega_i) P(xωi)也称为似然函数,将该式代入上述判别式,有:
P ( x ∣ ω 1 ) P ( ω 1 ) > P ( x ∣ ω 2 ) P ( ω 2 ) P(x|\omega_1)P(\omega_1) \gt P(x|\omega_2)P(\omega_2) P(xω1)P(ω1)>P(xω2)P(ω2),则 x ∈ ω 1 x \in \omega_1 xω1
P ( x ∣ ω 1 ) P ( ω 1 ) < P ( x ∣ ω 2 ) P ( ω 2 ) P(x|\omega_1)P(\omega_1) \lt P(x|\omega_2)P(\omega_2) P(xω1)P(ω1)<P(xω2)P(ω2),则 x ∈ ω 2 x \in \omega_2 xω2

l 12 ( x ) = P ( x ∣ ω 1 ) P ( x ∣ ω 2 ) > P ( ω 2 ) P ( ω 1 ) l_{12}(x)=\frac{P(x|\omega_1)}{P(x|\omega_2)} \gt \frac{P(\omega_2)}{P(\omega_1)} l12(x)=P(xω2)P(xω1)>P(ω1)P(ω2),则 x ∈ ω 1 x \in \omega_1 xω1
l 12 ( x ) = P ( x ∣ ω 1 ) P ( x ∣ ω 2 ) < P ( ω 2 ) P ( ω 1 ) l_{12}(x)=\frac{P(x|\omega_1)}{P(x|\omega_2)} \lt \frac{P(\omega_2)}{P(\omega_1)} l12(x)=P(xω2)P(xω1)<P(ω1)P(ω2),则 x ∈ ω 2 x \in \omega_2 xω2
其中, l 12 l_{12} l12称为似然比, P ( ω 2 ) P ( ω 1 ) \frac{P(\omega_2)}{P(\omega_1)} P(ω1)P(ω2)称为似然比的判决阈值,此判别称为贝叶斯判别。

例题:

假设某地发生地震事件 ω 1 \omega_1 ω1的概率为0.2, P ( ω 1 ) = 0.2 P(\omega_1)=0.2 P(ω1)=0.2,则不发生地震的概率 ω 2 \omega_2 ω2为0.8, P ( ω 2 ) = 0.8 P(\omega_2)=0.8 P(ω2)=0.8,已知地震通常与生物异常反应之间有一定的联系,生物是否发生异常这一结果以模式 x x x表示,有两种取值,包括异常和正常,假设地震前一周内发生生物异常的概率是0.6, P ( x = 异常 ∣ ω 1 ) = 0.6 P(x=异常|\omega_1)=0.6 P(x=异常ω1)=0.6,地震前一周生物正常的概率是0.4, P ( x = 正常 ∣ ω 1 ) = 0.4 P(x=正常|\omega_1)=0.4 P(x=正常ω1)=0.4,一周之内没有发生地震但是生物异常的概率是0.1,, P ( x = 异常 ∣ ω 2 ) = 0.1 P(x=异常|\omega_2)=0.1 P(x=异常ω2)=0.1,一周之内没有发生地震生物正常的概率是0.9, P ( x = 正常 ∣ ω 2 ) = 0.9 P(x=正常|\omega_2)=0.9 P(x=正常ω2)=0.9
求解:发生生物异常情况下一周之内发生地震的概率
P ( ω 1 ∣ x = 异常 ) = P ( x = 异常 ∣ ω 1 ) P ( ω 1 ) ∑ i = 1 2 P ( x = 异常 ∣ ω i ) P ( ω i ) = P ( x = 异常 ∣ ω 1 ) P ( ω 1 ) P ( x = 异常 ∣ ω 1 ) P ( ω 1 ) + P ( x = 异常 ∣ ω 2 ) P ( ω 2 ) = 0.6 × 0.2 0.6 × 0.2 + 0.1 × 0.8 = 0.6 似然比: l 12 = P ( x = 异常 ∣ ω 1 ) P ( x = 异常 ∣ ω 2 ) = 0.6 0.1 = 6 判决阈值: θ 21 = P ( ω 2 ) P ( ω 1 ) = 0.8 0.2 = 4 \begin{aligned} P(\omega_1|x=异常) &= \frac{P(x=异常|\omega_1)P(\omega_1)}{\sum_{i=1}^2P(x=异常|\omega_i)P(\omega_i)} \\ &= \frac{P(x=异常|\omega_1)P(\omega_1)}{P(x=异常|\omega_1)P(\omega_1) + P(x=异常|\omega_2)P(\omega_2) }\\ &= \frac{0.6 \times 0.2}{0.6 \times 0.2 + 0.1 \times 0.8} \\ &= 0.6 \end{aligned} \\ 似然比:l_{12} = \frac{P(x=异常|\omega_1)}{P(x=异常|\omega_2)}=\frac{0.6}{0.1}=6 \\ 判决阈值:\theta_{21}=\frac{P(\omega_2)}{P(\omega_1)}=\frac{0.8}{0.2}=4 P(ω1x=异常)=i=12P(x=异常ωi)P(ωi)P(x=异常ω1)P(ω1)=P(x=异常ω1)P(ω1)+P(x=异常ω2)P(ω2)P(x=异常ω1)P(ω1)=0.6×0.2+0.1×0.80.6×0.2=0.6似然比:l12=P(x=异常ω2)P(x=异常ω1)=0.10.6=6判决阈值:θ21=P(ω1)P(ω2)=0.20.8=4

贝叶斯最小风险判别

  • 目的:考虑到某些类别的错误判断比另外一些类的错误判断风险更大,需要对贝叶斯判别做一些修正。
  • M M M类分类问题的条件平均风险 r j ( x ) = ∑ i = 1 M L i j P ( ω i ∣ x ) r_j(x)=\sum_{i=1}^ML_{ij}P(\omega_i|x) rj(x)=i=1MLijP(ωix)
  • L i j L_{ij} Lij称为本应属于 ω i \omega_i ωi类的模式判别成属于 ω j \omega_j ωj类的是非代价,若 i = j i=j i=j即判别正确,得分, L i j L_{ij} Lij可以取负值或零,表示不失分,若 i ≠ j i\neq j i=j即判别错误,应该取正值。
  • 分类器对每一个模式 x x x M M M种可能的类别可供选择,将 x x x指定为具有最小风险值的那一类,则这种分类器称为最小平均条件风险分类器
  • 按照贝叶斯公式,平均条件风险可写成: r j ( x ) = 1 p ( x ) ∑ i = 1 M L i j P ( x ∣ ω i ) P ( ω i ) r_j(x)=\frac{1}{p(x)}\sum_{i=1}^{M}L_{ij}P(x|\omega_i)P(\omega_i) rj(x)=p(x)1i=1MLijP(xωi)P(ωi),舍去 1 P ( x ) \frac{1}{P(x)} P(x)1这个公共项简化为 r j ( x ) = ∑ i = 1 M L i j P ( x ∣ ω i ) P ( ω i ) r_j(x)=\sum_{i=1}^{M}L_{ij}P(x|\omega_i)P(\omega_i) rj(x)=i=1MLijP(xωi)P(ωi),这也是贝叶斯分类器,但是这个不是按错误概率最小作为标准,而是按平均条件风险作为标准。

两类的情况

M = 2 M=2 M=2即全部的模式样本只有 ω 1 \omega_1 ω1 ω 2 \omega_2 ω2两类,则平均风险可以写成:
当分类器将 x x x判别为 ω 1 \omega_1 ω1时:
r 1 ( x ) = L 11 P ( x ∣ ω 1 ) P ( ω 1 ) + L 21 P ( x ∣ ω 2 ) P ( ω 2 ) r_1(x)=L_{11}P(x|\omega_1)P(\omega_1)+L_{21}P(x|\omega_2)P(\omega_2) r1(x)=L11P(xω1)P(ω1)+L21P(xω2)P(ω2)
当分类器将 x x x判别为 ω 2 \omega_2 ω2时:
r 2 ( x ) = L 12 P ( x ∣ ω 1 ) P ( ω 1 ) + L 22 P ( x ∣ ω 2 ) P ( ω 2 ) r_2(x)=L_{12}P(x|\omega_1)P(\omega_1)+L_{22}P(x|\omega_2)P(\omega_2) r2(x)=L12P(xω1)P(ω1)+L22P(xω2)P(ω2)
r 1 ( x ) < r 2 ( x ) r_1(x)\lt r_2(x) r1(x)<r2(x),则 x x x被判定为属于 ω 1 \omega_1 ω1,此时:
L 11 P ( x ∣ ω 1 ) P ( ω 1 ) + L 21 P ( x ∣ ω 2 ) P ( ω 2 ) < L 12 P ( x ∣ ω 1 ) P ( ω 1 ) + L 22 P ( x ∣ ω 2 ) P ( ω 2 ) L_{11}P(x|\omega_1)P(\omega_1)+L_{21}P(x|\omega_2)P(\omega_2) \lt L_{12}P(x|\omega_1)P(\omega_1)+L_{22}P(x|\omega_2)P(\omega_2) L11P(xω1)P(ω1)+L21P(xω2)P(ω2)<L12P(xω1)P(ω1)+L22P(xω2)P(ω2)
即:
( L 12 − L 11 ) P ( x ∣ ω 1 ) P ( ω 1 ) > ( L 21 − L 22 ) P ( x ∣ ω 2 ) P ( ω 2 ) (L_{12}-L_{11})P(x|\omega_1)P(\omega_1) \gt (L_{21}-L_{22})P(x|\omega_2)P(\omega_2) (L12L11)P(xω1)P(ω1)>(L21L22)P(xω2)P(ω2)
P ( x ∣ ω 1 ) P ( x ∣ ω 2 ) > P ( ω 2 ) P ( ω 1 ) . L 21 − L 22 L 12 − L 11 \frac{P(x|\omega_1)}{P(x|\omega_2)} \gt \frac{P(\omega_2)}{P(\omega_1)} . \frac{L_{21}-L_{22}}{L_{12}-L_{11}} P(xω2)P(xω1)>P(ω1)P(ω2).L12L11L21L22
该式左边为似然比: l 12 = P ( x ∣ ω 1 ) P ( x ∣ ω 2 ) l_{12}=\frac{P(x|\omega_1)}{P(x|\omega_2)} l12=P(xω2)P(xω1)
右边为阈值: θ 2 1 = P ( ω 2 ) P ( ω 1 ) . L 21 − L 22 L 12 − L 11 \theta_21=\frac{P(\omega_2)}{P(\omega_1)} . \frac{L_{21}-L_{22}}{L_{12}-L_{11}} θ21=P(ω1)P(ω2).L12L11L21L22

  • l 12 ( x ) > θ 21 l_{12}(x) \gt \theta_{21} l12(x)>θ21,则 x ∈ ω 1 x \in \omega_1 xω1
  • l 12 ( x ) < θ 21 l_{12}(x) \lt \theta_{21} l12(x)<θ21,则 x ∈ ω 2 x \in \omega_2 xω2

通常,当判别正确时,不失分,可选常数 L 11 = L 22 = 0 L_{11}=L_{22}=0 L11=L22=0;判别错误时,可选 L 12 = L 21 = 1 L_{12}=L_{21}=1 L12=L21=1,此时 θ 21 = P ( ω 2 ) P ( ω 1 ) \theta_{21}=\frac{P(\omega_2)}{P(\omega_1)} θ21=P(ω1)P(ω2)

  • 例:一信号通过一受噪声干扰的信道,信道输入信号为0或1,噪声为高斯型,其均值为 μ = 0 \mu=0 μ=0,方差为 σ 2 \sigma^2 σ2,信道输出为 x x x,试求最优的判别规则,从观察值 x x x的基础上判别它是0还是1,直观上可以看出,若 x < 0.5 x \lt 0.5 x<0.5应该判为0, x > 0.5 x \gt 0.5 x>0.5应该判为1。用贝叶斯判别条件分析,设信号送0的先验概率为 P ( 0 ) P(0) P(0),送1的先验概率为 P ( 1 ) P(1) P(1)
    当输入信号为0时,受噪声为正态分布 N ( 0 , σ 2 ) N(0,\sigma^2) N(0,σ2)的干扰,其幅值大小的概率密度为:
    P ( x ∣ ω 1 ) = 1 2 π σ e − x 2 2 σ 2 P(x|\omega_1)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{x^2}{2\sigma^2}} P(xω1)=2π σ1e2σ2x2
    当输入信号为0时,其幅值大小的概率密度为:
    P ( x ∣ ω 2 ) = 1 2 π σ e − ( x − 1 ) 2 2 σ 2 P(x|\omega_2)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-1)^2}{2\sigma^2}} P(xω2)=2π σ1e2σ2(x1)2
    则似然比为: l 12 = P ( x ∣ ω 1 ) P ( x ∣ ω 2 ) = e 1 − 2 x 2 σ 2 l_{12}=\frac{P(x|\omega_1)}{P(x|\omega_2)} = e^{\frac{1-2x}{2\sigma^2}} l12=P(xω2)P(xω1)=e2σ212x
    l 12 > θ 21 l_{12} \gt \theta_{21} l12>θ21,即 e 1 − 2 x 2 σ 2 > θ 21 e^{\frac{1-2x}{2\sigma^2}} \gt \theta_{21} e2σ212x>θ21,则 x < 1 2 − σ 2 l n θ 21 x \lt \frac{1}{2} - \sigma^2 ln\theta_{21} x<21σ2lnθ21,则 x ∈ ω 1 x \in \omega_1 xω1,此时信号是0,即:
    x < 1 2 − σ 2 l n ( L 21 L 12 . P ( 1 ) P ( 0 ) ) x \lt \frac{1}{2}-\sigma^2ln\left(\frac{L_{21}}{L_{12}}.\frac{P(1)}{P(0)}\right) x<21σ2ln(L12L21.P(0)P(1))
    若取 L 21 = L 21 = 1 , P ( 1 ) = P ( 0 ) L_{21}=L_{21}=1, P(1)=P(0) L21=L21=1,P(1)=P(0),则 x < 1 2 x \lt \frac{1}{2} x<21判为0
    若无噪声干扰,即 σ 2 = 0 \sigma^2=0 σ2=0,则 x < 1 2 x \lt \frac{1}{2} x<21判为0

一般多类的情况

对于 M M M类情况,若 r i ( x ) < r j ( x ) , j = 1 , 2 , ⋯   , M , j ≠ i r_i(x) \lt r_j(x), j = 1,2,\cdots,M,j\neq i ri(x)<rj(x),j=1,2,,M,j=i,则 x ∈ ω 1 x \in \omega_1 xω1
L L L可如下取值,判对失分为0,判错失分为1记:
L i j = { 0 w h e n   i = j 1 w h e n   i ≠ j L_{ij}= \begin{cases} 0 & when\ i = j \\ 1 & when\ i \neq j \end{cases} Lij={01when i=jwhen i=j
则条件平均风险可写成:
r j ( x ) = ∑ i = 1 M L i j P ( x ∣ ω i ) P ( ω i ) = L 1 j P ( x ∣ ω 1 ) P ( ω 1 ) + ⋯ + L j j P ( x ∣ ω j ) P ( ω j ) + ⋯ + L M j P ( x ∣ ω M ) P ( ω M ) = ∑ i = 1 M P ( x ∣ ω i ) P ( ω i ) − P ( x ∣ ω j ) P ( ω j ) = P ( x ) − P ( x ∣ ω j ) P ( ω j ) \begin{aligned} r_j(x) &= \sum_{i=1}^ML_{ij}P(x|\omega_i)P(\omega_i) \\ &= L_{1j}P(x|\omega_1)P(\omega_1) + \cdots + L_{jj}P(x|\omega_j)P(\omega_j) + \cdots + L_{Mj}P(x|\omega_M)P(\omega_M) \\ &= \sum_{i=1}^MP(x|\omega_i)P(\omega_i) - P(x|\omega_j)P(\omega_j) \\ &= P(x) - P(x|\omega_j)P(\omega_j) \end{aligned} rj(x)=i=1MLijP(xωi)P(ωi)=L1jP(xω1)P(ω1)++LjjP(xωj)P(ωj)++LMjP(xωM)P(ωM)=i=1MP(xωi)P(ωi)P(xωj)P(ωj)=P(x)P(xωj)P(ωj)
r i ( x ) < r j ( x ) r_i(x) \lt r_j(x) ri(x)<rj(x),有当 P ( x ∣ ω i ) P ( ω i ) > P ( x ∣ ω j ) P ( ω j ) P(x|\omega_i)P(\omega_i) \gt P(x|\omega_j)P(\omega_j) P(xωi)P(ωi)>P(xωj)P(ωj)时, x ∈ ω i x \in \omega_i xωi,对应于判别函数为:取 d i ( x ) = P ( x ∣ ω i ) P ( ω i ) , i = 1 , 2 , ⋯   , M d_i(x)=P(x|\omega_i)P(\omega_i),i=1,2,\cdots,M di(x)=P(xωi)P(ωi),i=1,2,,M,则对于全部 j ≠ i j \neq i j=i的值,若 d i ( x ) > d j ( x ) d_i(x) \gt d_j(x) di(x)>dj(x),则 x ∈ ω i x \in \omega_i xωi

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值