在当今的人工智能和机器学习领域,利用多 GPU 进行加速计算已经成为提升性能的关键手段。本文将详细介绍如何在系统中使用多张 GPU 来运行 Ollama,充分发挥硬件的强大性能。
1. 确认 GPU 环境
在开始配置之前,首先要确保 多张 GPU 已经被系统正确识别,并且驱动程序已经安装妥当。我们可以使用 nvidia-smi
命令来进行确认。打开终端,输入以下命令:
nvidia-smi
执行该命令后,终端会显示每个 GPU 的详细信息,包括使用情况、显存占用、温度等。如果能看到 多张 GPU 的完整信息,那么说明硬件和驱动都已经正确安装。
2. 设置环境变量
通过设置 CUDA_VISIBLE_DEVICES
环境变量,我们可以指定 Ollama 使用哪些 GPU。这是实现多 GPU 并行计算的重要步骤。
使用特定的 GPU
如果你只想让 Ollama 使用前 4 张 GPU(编号从 0 到 3),可以在启动命令前设置该变量,在 Linux 或 macOS 系统中,使用以下命令:
export CUDA_VISIBLE_DEVICES=0,1,2,3
在 Windows 系统中,设置环境变量的方式有所不同。你可以通过以下命令来设置:
set CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
3. 启动 Ollama 使用 GPU
在成功设置环境变量之后,就可以启动 Ollama 了。在终端中输入以下命令:
ollama run
此时,Ollama 应该会自动识别并使用你指定的 GPU。
4. 多 GPU 设置
如果需要进行多 GPU 加速,例如数据并行,需要确保 Ollama 和所使用的模型支持分布式计算。因为 Ollama 本身可能没有直接提供多 GPU 支持,所以可能需要通过深度学习框架(如 PyTorch 或 TensorFlow)来配置多 GPU 支持。
以 PyTorch 为例
如果使用 PyTorch 作为后端,可以参考以下代码示例来配置多 GPU 支持:
import torch
import torch.nn as nn
from torch.nn.parallel import DataParallel
# 假设 model 是你的模型
model = ...
if torch.cuda.device_count() > 1:
model = DataParallel(model)
model.to('cuda')
手动调整代码或配置文件
如果上述方法都不适用,可能需要自行调整 Ollama 的代码或配置文件来启用多 GPU 功能。这可能需要对 Ollama 的代码结构有一定的了解,并且要熟悉相关的深度学习框架。
5. 监控 GPU 使用情况
在启动 Ollama 之后,可以继续使用 nvidia-smi
命令来监控每张 GPU 的使用情况。打开一个新的终端窗口,持续运行 nvidia-smi
命令,观察每个 GPU 的显存占用和计算使用率。
watch -n 1 nvidia-smi
如果发现只有一个 GPU 在工作,可能是配置存在问题,或者模型没有正确地并行化到多个 GPU 上。这时需要仔细检查环境变量的设置、代码配置以及 Ollama 和模型的兼容性。
总结
通过以上步骤,我们可以确保系统尽可能地利用所有 多张GPU 来运行 Ollama。如果在配置过程中遇到问题,建议查阅 Ollama 的官方文档,确认其是否支持多 GPU 并行计算,或者对系统性能进行进一步的优化。充分利用多 GPU 的并行计算能力,可以显著提升 Ollama 的运行效率,加快模型的推理和训练速度。希望本文能帮助你顺利实现 多张 GPU 的高效利用。