高等数学张宇18讲 第七讲 一元函数积分学的概念与计算

目录

例题七

例7.10 设 y = y ( x ) y=y(x) y=y(x),如果 ∫ y d x ⋅ ∫ 1 y d x = − 1 \displaystyle\int y\mathrm{d}x\cdot\displaystyle\int\cfrac{1}{y}\mathrm{d}x=-1 ydxy1dx=1,且 lim ⁡ x → + ∞ y = 0 \lim\limits_{x\to+\infty}y=0 x+limy=0,求 y y y的表达式。

  由已知条件,得
∫ 1 y d x = − 1 ∫ y d x . \displaystyle\int\cfrac{1}{y}\mathrm{d}x=\cfrac{-1}{\displaystyle\int y\mathrm{d}x}. y1dx=ydx1.
  根据不定积分的定义,有
1 y = ( − 1 ∫ y d x ) ′ = y ( ∫ y d x ) 2 . \cfrac{1}{y}=\left(\cfrac{-1}{\displaystyle\int y\mathrm{d}x}\right)'=\cfrac{y}{(\displaystyle\int y\mathrm{d}x)^2}. y1=ydx1=(ydx)2y.
  所以 ∫ y d x = ± y \displaystyle\int y\mathrm{d}x=\pm y ydx=±y,可得 ± y ′ = y \pm y'=y ±y=y,即 ± d y d x = y \pm\cfrac{\mathrm{d}y}{\mathrm{d}x}=y ±dxdy=y,分离变量,两边积分,再由 lim ⁡ x → + ∞ y = 0 , y ( 0 ) = 1 \lim\limits_{x\to+\infty}y=0,y(0)=1 x+limy=0,y(0)=1,得 y = e − x y=e^{-x} y=ex。(这道题主要利用了隐函数的求导的方法求解

例7.20 求 ∫ d x x 2 2 x − 4 \displaystyle\int\cfrac{\mathrm{d}x}{x^2\sqrt{2x-4}} x22x4 dx


∫ d x x 2 2 x − 4 = 2 x − 4 = t ∫ 4 d t ( t 2 + 4 ) 2 = t = 2 tan ⁡ u 4 ∫ 2 sec ⁡ 2 u d u 4 2 ⋅ sec ⁡ 4 u = 1 2 ∫ cos ⁡ 2 u d u = 1 4 ∫ ( 1 + cos ⁡ 2 u ) d u = 1 4 u + 1 8 sin ⁡ 2 u + C = 1 4 arctan ⁡ t 2 + 1 4 ⋅ t 4 + t 2 ⋅ 2 4 + t 2 + C = 1 4 arctan ⁡ 2 x − 4 2 + s q r t 2 x − 4 4 x + C . \begin{aligned} \displaystyle\int\cfrac{\mathrm{d}x}{x^2\sqrt{2x-4}}&\xlongequal{\sqrt{2x-4}=t}\displaystyle\int\cfrac{4\mathrm{d}t}{(t^2+4)^2}\xlongequal{t=2\tan u}4\displaystyle\int\cfrac{2\sec^2u\mathrm{d}u}{4^2\cdot\sec^4u}\\ &=\cfrac{1}{2}\displaystyle\int\cos^2u\mathrm{d}u=\cfrac{1}{4}\displaystyle\int(1+\cos2u)\mathrm{d}u=\cfrac{1}{4}u+\cfrac{1}{8}\sin2u+C\\ &=\cfrac{1}{4}\arctan\cfrac{t}{2}+\cfrac{1}{4}\cdot\cfrac{t}{\sqrt{4+t^2}}\cdot\cfrac{2}{\sqrt{4+t^2}}+C\\ &=\cfrac{1}{4}\arctan\cfrac{\sqrt{2x-4}}{2}+\cfrac{sqrt{2x-4}}{4x}+C. \end{aligned} x22x4 dx2x4 =t (t2+4)24dtt=2tanu 442sec4u2sec2udu=21cos2udu=41(1+cos2u)du=41u+81sin2u+C=41arctan2t+414+t2 t4+t2 2+C=41arctan22x4 +4xsqrt2x4+C.

例7.24 求极限 lim ⁡ n → ∞ ( b 1 n − 1 ) ∑ i = 0 n − 1 b i n sin ⁡ b 2 i + 1 2 n \lim\limits_{n\to\infty}(b^{\frac{1}{n}}-1)\sum^{n-1}\limits_{i=0}b^{\frac{i}{n}}\sin b^{\frac{2i+1}{2n}} nlim(bn11)i=0n1bnisinb2n2i+1

   原式 = lim ⁡ n → ∞ ( b 1 n − 1 ) ∑ i = 0 n − 1 ( sin ⁡ b 2 i + 1 2 n ) ( b i + 1 n − b i n ) \text{原式}=\lim\limits_{n\to\infty}(b^{\frac{1}{n}}-1)\sum^{n-1}\limits_{i=0}(\sin b^{\frac{2i+1}{2n}})(b^{\frac{i+1}{n}}-b^{\frac{i}{n}}) 原式=nlim(bn11)i=0n1(sinb2n2i+1)(bni+1bni),这里的和式,可看成函数 sin ⁡ x \sin x sinx [ 1 , b ] [1,b] [1,b]上按以下划分
1 = b 0 n < b 1 n < b 2 n < ⋯ < b n n = b 1=b^{\frac{0}{n}}<b^{\frac{1}{n}}<b^{\frac{2}{n}}<\cdots<b^{\frac{n}{n}}=b

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值