【综述 寿命预测】基于机器学习的设备剩余寿命预测方法综述

该文综述了基于机器学习的设备剩余寿命预测方法,包括浅层学习(神经网络、SVM)和深度学习(DNN、DBN、CNN、RNN/LSTM)方法,讨论了各类方法的优势与不足,并指出未来研究方向,如多失效模式预测、智能特征提取及融合不同方法的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文题目:基于机器学习的设备剩余寿命预测方法综述
论文年份:2019
论文作者:裴洪/胡昌华/司小胜/张建勋/庞哲楠/张鹏
论文单位:火箭军工程大学导弹工程学院
DOI:10.3901/JME.2019.08.001

Abstract

本文主要阐述基于机器学习的设备剩余寿命预测方法,根据机器学习模型结构的深度,将其分为基于浅层机器学习的方法基于深度学习的方法,同时梳理了每类方法的发展分支与研究现状,并且总结了相应的优势和缺点,最后探讨了基于机器学习的剩余寿命预测方法的未来研究方向。

引言

预测与健康管理(PHM)主要包括:剩余寿命(RUL)和健康管理。RUL通常用于描述当前时刻与失效时刻之间的时间间隔,RUL定义为T-t|T>t ,其中,T表示设备的失效时刻,t表示当前时刻。实现RUL的主要思想在于根据设备的失效机理、状态监测数据以及失效数据等有效信息,确定出RUL的分布或期望。

1.基于浅层机器学习的寿命预测方法

1.1 基于神经网络的寿命预测方法

基于神经网络的寿命预测方法旨在以原始测量数据或基于原始测量数据所提取的特征作为神经网络的输入,通过一定的训练算法不断调整网络的结构和参数,利用优化后的网络在线预测设备的剩余寿命,预测过程中无需任何先验信息,完全基于监测数据得到的预测结果。当前基于神经网络的方法主要包含基于MLP神经网络的方法基于RBF神经网络的方法以及ELMs的方法<

《基于机器学习算法寿命预测与故障诊断技术应用与发展综述.pdf》是一篇关于基于机器学习算法寿命预测与故障诊断技术应用与发展的综述文章。机器学习算法寿命预测和故障诊断领域具有广泛的应用和发展前景。 该综述首先介绍了寿命预测与故障诊断的背景和研究意义。随着工业设备的复杂性和使用规模的增加,寿命预测和故障诊断成为保障设备安全运行和提高设备利用率的重要手段。然后,文章详细介绍了机器学习算法寿命预测与故障诊断领域的应用。 在寿命预测方面,机器学习算法可以通过对设备的历史数据进行分析和建模,预测设备寿命及其剩余使用时间。常用机器学习算法包括支持向量机、决策树和神经网络等。这些算法能够从大量的数据中学习规律,并做出准确的寿命预测。 在故障诊断方面,机器学习算法可以通过对设备的实时数据进行分析和模式识别,判断设备是否存在故障,并尽早发现故障原因。常用机器学习算法包括K均值聚类、随机森林和深度学习等。这些算法能够对大量的实时数据进行高效处理,帮助工程师迅速找到故障点。 最后,文章总结了机器学习算法寿命预测与故障诊断技术中的应用优势和发展趋势。机器学习算法可以更好地挖掘数据中的隐藏信息,提高预测和诊断的准确性。未来,随着大数据和人工智能技术的不断发展,机器学习算法寿命预测与故障诊断领域将有更广泛的应用和更深入的研究。 综上所述,基于机器学习算法寿命预测与故障诊断技术应用与发展正逐渐成为工业领域的研究热点,并且具有巨大的潜力和发展前景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值