基于物理信息数据增强的剩余使用寿命预测
一、引言
1.1、研究背景和意义
在现代工业和科技领域,设备的剩余使用寿命(Remaining Useful Life,RUL)预测成为了维护操作和资源管理的关键技术。准确预测设备的RUL不仅可以帮助企业优化维护计划,减少非计划停机时间,而且还能显著降低维护成本,提高设备的使用效率和安全性。因此,RUL预测技术在航空航天、制造、能源等多个领域得到了广泛的应用和关注。
1.2、研究现状
目前,RUL预测方法主要分为两大类:基于模型的方法和数据驱动方法。基于模型的方法通过建立设备的物理模型来预测其剩余寿命,而数据驱动方法则依赖于历史数据和监控信号,使用机器学习或深度学习技术进行预测。尽管这些方法在某些应用中取得了不错的效果,但仍面临数据不足、模型泛化能力差等问题。
1.3、存在的问题
在实际的工业环境中,设备的运行条件复杂多变,这使得传统的RUL预测方法在准确性和稳定性方面面临挑战。此外,数据稀缺和数据质量问题