新手案例-基于卷积神经网络的航空发动机剩余寿命预测方法

 1、文章概括

本文利用NASA提供的涡扇发动机退化数据集(数据链接),进行数据预处理,构建训练样本和测试样本。然后,搭建卷积神经网络(Convolutional Neural Network,CNN),学习训练数据。最后,利用测试数据,分析神经网络模型预测剩余使用寿命(Remaining useful life,RUL)的效果。

该例子来自于Mathwork官方教程:https://ww2.mathworks.cn/help/predmaint/ug/remaining-useful-life-estimation-using-convolutional-neural-network.html

分享的目的是希望新手能更好地理解基于深度学习的RUL预测流程。

1.1 技术路线

1.2 结果展示

上述结果分别为测试集的RSME偏差分布直方图和某个案例的RUL预测结果图。

从RSME偏差分布直方图中能发现,CNN网络模型对航天发动机的RUL预测偏差主要分布为10至15之间。

从RUL预测结果图能发现,随着RUL的逐渐降低,预测的RUL曲线逐渐逼近真实的RUL曲线,验证了CNN网络的可行性。

以上这些结果表明了卷积神经网络在航空发动机RUL预测可行性,但网络模型有待进一步的优化和改进。

代码采用了Matlab 2023a进行运行,欢迎大家测试和提出问题!

2.基于卷积神经网络的航空发动机剩余寿命预测方法

技术路线:

第一步:读取航空发动机的退化数据集,并开展数据预处理操作,整理训练样本和测试样本。

第二步:搭建卷积神经网络模型,并利用训练数据训练神经网络模型。

第三步:采用已训练的神经网络模型,预测测试样本的剩余使用寿命,并采用RMSE评估网络的预测效果。

2.1 故障模式识别OR剩余寿命预测的区别

基于卷积神经网络和连续小波变换的滚动轴承智能诊断研究是故障模式识别研究,本篇文章是剩余寿命预测研究。

两者的区别是前者是神经网络的分类研究,后者是神经网络的回归研究,分类和回归的区别是输出存在差异,分类的输出是1,2,3,4等已知的数值类别,回归的输出是一个区间的所有数值,这个数值是无法被完全列举出来的,而分类的输出可以。

2.2 卷积神经网络?

卷积神经网络(Convolutional Neural Networks,CNNs)是一种深度学习模型,它在图像处理、语音识别、自然语言处理等多个领域都有着广泛的应用。

CNNs的设计灵感来源于人类视觉系统的工作原理,它特别适合处理具有网格状拓扑结构的数据,如图像。著名的卷积神经网络模型有AlexNet、InceptionNet、VGGNet和ResNet等。

值得注意是,上述的这些卷积神经网络是对图片进行卷积操作,它会利用当前位置的前后四周的数据。而在本文案例中,在进行卷积操作时,处理的对象是时间序列,如果还按照上述的卷积方式,会将未来数据带入计算,这是矛盾的,因此需要改变卷积网络的参数。

3. 实验分析

该数据集为C-MAPSS模拟数据,该数据是模拟大型商用涡扇发动机的数据, 发动机简图如上图所示。该数据的代码采用了MATLAB及其Simulink模块。该模型的详细细节见参考文献1和2。

数据解读链接:C-MAPSS涡扇发动机仿真数据(

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值