- 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
- 🍖 原作者:K同学啊 | 接辅导、项目定制
- 🚀 文章来源:K同学的学习圈子
我的环境:
-
语言环境:python 3.8
-
编译器:jupyter notebook
-
深度学习环境:Pytorch
torch == 2.1.0+cpu
torchvision == 0.16.0+cpu
一、准备工作
1. 数据下载
MNIST手写数据集:
下载链接:http://yann.lecun.com/exdb/mnist/ ,python可以直接调用
包含70000张图片, 60000张训练,10000张测试,数据大小为28*28。相当于[60000,784]的训练集。
import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import torchvision
- 使用torchvision.datasets下载数据(pytorch自带数据库)
torchvision.datasets.MNIST(root,train=True, transform=None, target_transform=None, download=False)
train_ds = torchvision.datasets.MNIST('data',
train=True,
transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor
download=True)
test_ds = torchvision.datasets.MNIST('data',
train=False,
transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor
download=True)
Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz
Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to data\MNIST\raw\train-images-idx3-ubyte.gz
100%|████████████████████████████████████████████████████████████████████| 9912422/9912422 [00:17<00:00, 582128.56it/s]
Extracting data\MNIST\raw\train-images-idx3-ubyte.gz to data\MNIST\raw
Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz
Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz to data\MNIST\raw\train-labels-idx1-ubyte.gz
100%|██████████████████████████████████████████████████████████████████████| 28881/28881 [00:00<00:00, 14451884.25it/s]
Extracting data\MNIST\raw\train-labels-idx1-ubyte.gz to data\MNIST\raw
Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz
Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz to data\MNIST\raw\t10k-images-idx3-ubyte.gz
100%|████████████████████████████████████████████████████████████████████| 1648877/1648877 [00:02<00:00, 754430.48it/s]
Extracting data\MNIST\raw\t10k-images-idx3-ubyte.gz to data\MNIST\raw
Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz
Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz to data\MNIST\raw\t10k-labels-idx1-ubyte.gz
100%|█████████████████████████████████████████████████████████████████████████| 4542/4542 [00:00<00:00, 4534760.48it/s]
Extracting data\MNIST\raw\t10k-labels-idx1-ubyte.gz to data\MNIST\raw
2. 数据加载(设置batchsize和取样等功能)
-
使用torch.utils.data.DataLoader进行数据加载
torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=None,sampler=None, batch_sampler=None, num_workers=0, collate_fn=None, pin_memory=False, drop_last=False, timeout=0, worker_init_fn=None, multiprocessing_context=None, generator=None, *, prefetch_factor=2, persistent_workers=False, pin_memory_device=‘’)
batch_size = 32
train_dl = torch.utils.data.DataLoader(train_ds,
batch_size=batch_size,
shuffle=True)
test_dl = torch.utils.data.DataLoader(test_ds,
batch_size=batch_size)
imgs, labels = next(iter(train_dl))
imgs.shape # shape = [batch_size,channel,height,weight]
torch.Size([32, 1, 28, 28])
3. 图片可视化
plt库的函数:
- plt.figure() 创建一个画板。figsize=(x,y),表示空白画布的横纵坐标比;dpi=x表示像素的个数,是对图像大小的控制。
- plt.subplot(x,y,z) 分成x行y列,当前位置的index=z。
- plt.xticks() x轴坐标,第一个参数表示设置的步长大小;第二个参数表示显示的坐标轴刻度,默认为坐标的值。
- plt.yticks() y轴坐标,同上。
- plt.xlabel()、plt.ylabel()和plt.title()函数分别用于设置x坐标轴、y坐标轴和图标的标题信息。
- plt.grid(False/True) 显示网格线。
- plt.imshow(x,……) 用于显示图像数据或数组x,将其可视化为图像。它将数组中的每个元素的值映射为一个颜色,并将这些颜色排列成图像的形式。
- plt.show() 显示已创建的图片。
import numpy as np
# 指定图片大小,图像大小为20宽、5高的绘图(单位为英寸inch)
plt.figure(figsize=(20, 5))
for i, imgs in enumerate(imgs[:20]):
# 维度缩减
npimg = np.squeeze(imgs.numpy()) #从shape中去掉维度为1的
# 将整个figure分成2行10列,绘制第i+1个子图。
plt.subplot(2, 10, i+1)
plt.imshow(npimg, cmap=plt.cm.binary)
plt.axis('off')
#plt.show() 如果你使用的是Pycharm编译器,请加上这行代码
二、CNN网络配置、编译、训练
1. 模型建立
该模型为LeNet-5网络:
LeNet共分为7层,分别是:
- C1,卷积层,提取图片特征,nn.Conv2d(inputsize,outputsize,kernel_size)
- S2,池化层,下采样,更高层的抽象,nn.MaxPool2d(kernel_size)
- C3,卷积层
- S4,池化层
- C5,卷积层
- F6,全连接层,nn.Linear(inputsize,outputsize)
- OUTPUT,全连接层
函数:
- nn.ReLU(),激活函数,拟合非线性数据
- nn.Sequential,按照构造顺序连接网络
import torch.nn.functional as F
num_classes = 10 # 图片的类别数
class Model(nn.Module):
def __init__(self):
super().__init__()
# 特征提取网络
self.conv1 = nn.Conv2d(1, 32, kernel_size=3) # 第一层卷积,卷积核大小为3*3
self.pool1 = nn.MaxPool2d(2) # 设置池化层,池化核大小为2*2
self.conv2 = nn.Conv2d(32, 64, kernel_size=3) # 第二层卷积,卷积核大小为3*3
self.pool2 = nn.MaxPool2d(2)
# 分类网络
self.fc1 = nn.Linear(1600, 64)
self.fc2 = nn.Linear(64, num_classes)
# 前向传播
def forward(self, x):
x = self.pool1(F.relu(self.conv1(x)))
x = self.pool2(F.relu(self.conv2(x)))
x = torch.flatten(x, start_dim=1)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
model = Model()
torchinfo.summary(model) #显示模型信息
=================================================================
Layer (type:depth-idx) Param #
=================================================================
Model --
├─Conv2d: 1-1 320
├─MaxPool2d: 1-2 --
├─Conv2d: 1-3 18,496
├─MaxPool2d: 1-4 --
├─Linear: 1-5 102,464
├─Linear: 1-6 650
=================================================================
Total params: 121,930
Trainable params: 121,930
Non-trainable params: 0
=================================================================
2. 训练函数
2.1 设置超参数
loss_fn = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-2 # 学习率
opt = torch.optim.SGD(model.parameters(),lr=learn_rate)
2.2 训练函数
- optimizer.zero_grad(),梯度清零。
- loss.backward(),反向传播计算每个w的梯度值。
- optimizer.step(),梯度下降法更新参数值。
# 训练循环
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset) # 训练集的大小,一共60000张图片
num_batches = len(dataloader) # 批次数目,1875(60000/32)
train_loss, train_acc = 0, 0 # 初始化训练损失和正确率
for X, y in dataloader: # 获取图片及其标签
#X, y = X.to(device), y.to(device)
# 计算预测误差
pred = model(X) # 网络输出
loss = loss_fn(pred, y) # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
# 反向传播
optimizer.zero_grad() # grad属性归零
loss.backward() # 反向传播
optimizer.step() # 每一步自动更新
# 记录acc与loss
train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
train_loss += loss.item()
train_acc /= size
train_loss /= num_batches
return train_acc, train_loss
train_acc和loss的计算原理:
- pred.argmax(1)返回预测结果pred行最大值的索引,每行是表示一个样本的预测概率分布。==y表示判断预测是否正确。
- .type(torch.float)将判断结果转为浮点类型可以进行求和。
- .sum()对预测结果的正误进行求和。
- .item()将求和结果转为标量值便于输出。
2.3 测试函数
去掉了训练函数中梯度下降和权重更新的步骤。
def test (dataloader, model, loss_fn):
size = len(dataloader.dataset) # 测试集的大小,一共10000张图片
num_batches = len(dataloader) # 批次数目,313(10000/32=312.5,向上取整)
test_loss, test_acc = 0, 0
# 当不进行训练时,停止梯度更新,节省计算内存消耗
with torch.no_grad():
for imgs, target in dataloader:
#imgs, target = imgs.to(device), target.to(device)
# 计算loss
target_pred = model(imgs)
loss = loss_fn(target_pred, target)
test_loss += loss.item()
test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()
test_acc /= size
test_loss /= num_batches
return test_acc, test_loss
2.4 模型训练
- model.train(),用于训练,启用BN层和dropout。
- model.eval(),用于测试,不启用BN层和dropout。
epochs = 5
train_loss = []
train_acc = []
test_loss = []
test_acc = []
for epoch in range(epochs):
model.train()
epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
train_acc.append(epoch_train_acc)
train_loss.append(epoch_train_loss)
test_acc.append(epoch_test_acc)
test_loss.append(epoch_test_loss)
template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')
Epoch: 1, Train_acc:74.5%, Train_loss:0.806, Test_acc:93.8%,Test_loss:0.210
Epoch: 2, Train_acc:94.6%, Train_loss:0.178, Test_acc:96.8%,Test_loss:0.112
Epoch: 3, Train_acc:96.6%, Train_loss:0.111, Test_acc:97.5%,Test_loss:0.085
Epoch: 4, Train_acc:97.4%, Train_loss:0.086, Test_acc:98.0%,Test_loss:0.066
Epoch: 5, Train_acc:97.8%, Train_loss:0.073, Test_acc:98.1%,Test_loss:0.058
Done
三、训练结果可视化
import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore") #忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
plt.rcParams['figure.dpi'] = 100 #分辨率
epochs_range = range(epochs)
plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
四、总结
- 本周内容主要是使用pytorch框架实现了之前在TensorFlow上完成过的mnist手写数字识别。
- 两个架构在整体的思路上基本一致,但具体的实现函数较为不同。在后续的学习中可以结合对TensorFlow的回顾来对比两个框架。