无废话的机器学习笔记(四)(感知机、逻辑回归、贝叶斯)

这节我们介绍监督学习中分类方法的感知机逻辑回归贝叶斯分类。在线性回归中,我们将特征的系数乘以它们各自的特征值,并加上截距,从而得到我们的预测,其范围可以从负无穷到正无穷。分类可以理解为限制了线性回归函数的输出为离散固定的,如+1,-1;猫,狗。

感知机

感知机(perceptron)是感知(perception)和神经元(neuron)的组合叫法,我们的神经元是一节接着一节的结构:

来自百度
这是百度找的一张神经元图,多条树突输入的信号共同作用于中心的细胞,细胞会对信号进行综合处理,若满足一定条件则会被激活,然后将新的信号沿着轴突传给下一个神经元,多个神经元组成了一个神经网络,这也就是深度学习中借鉴我们大脑的重要概念。
来自百度
这张百度的图形象说明了单个感知机的基本原理,若我们把拟合函数定为 h ( x ) = s i g n ( w T x ) h(x) =sign( w^Tx ) h(x)=sign(wTx), w是我们要求的目标,当输入x参数后,乘上所有w,会得到一个值,由于sign函数,如果这个值大于0,则输出+1,反之输出-1. 利用前面学的损失函数概念,我们就可以建一个损失函数然后衡量每一个数据的拟合准确率。
对于感知机有一个最简单的算法,PLA(感知机算法):
w ← w + y n x n w\leftarrow w + y_nx_n ww+ynxn y n y_n yn是第n个数据的标签,按照这个算法可以不断优化h(x)的准确率。
 

逻辑回归

与感知机其实很像,对于 s = w T x s = w^Tx s=wTx, 我们不做sign函数处理,我们做将它代进 θ ( s ) = 1 1 + e − s \theta(s) = \frac{1}{1+e^{-s}} θ(s)=1+es1 这个sigmoid函数里得到0和+1输出

在这里插入图片描述
 

贝叶斯分类

P ( A ∣ B ) = P ( A B ) P ( B ) = P ( B ∣ A ) P ( A ) P ( B ) P(A|B) = \frac{P(AB)}{P(B)} = \frac{P(B|A)P(A)}{P(B)} P(AB)=P(B)P(AB)=P(B)P(BA)P(A) 就是这个公式,非常简单,但蕴含的智慧很大。可以看成 后 验 = ( 概 率 × 先 验 ) / 根 据 后验 = (概率 \times 先验 ) / 根据 =(×)/后验先验的概念很重要,先验指的是由统计或经验得到的概率,如P(X = 学习)=0.3,P(X = 摸鱼)=0.7。我们已知学习的人和摸鱼的人男女比例都是0.5后,就可以求P(X = 摸鱼 | Y = 男) 这一后验概率 P ( X = 摸 鱼 ∣ Y = 男 ) = P ( Y = 男 ∣ X = 摸 鱼 ) P ( X = 摸 鱼 ) P ( Y = 男 ) P(X = 摸鱼 | Y = 男) = \frac{P(Y = 男 | X = 摸鱼) P(X = 摸鱼) }{P(Y = 男)} P(X=Y=)=P(Y=)P(Y=X=)P(X=)

因为男女比例限制为0.5,所以算出来还是0.7哈哈,反正计算过程就是这么个意思。还有个连续分布的公式:
P ( θ ∣ D ) = P ( D ∣ θ ) P ( θ ) P ( D ) = P ( D ∣ θ ) P ( θ ) ∫ P ( D ∣ θ ) P ( θ ) d θ P(\theta|D) =\frac{P(D|\theta)P(\theta)}{P(D)}= \frac{P(D|\theta)P(\theta)}{\int P(D|\theta)P(\theta)d\theta} P(θD)=P(D)P(Dθ)P(θ)=P(Dθ)P(θ)dθP(Dθ)P(θ)

朴素贝叶斯(Naive Bayesian):
P ( w ∣ x 1 , … , x p ) ∝ P ( x 1 , … , x p ∣ w ) ⋅ P ( w ) P(w|x_1,\dots,x_p)\propto P(x_1,\dots,x_p|w)\cdot P(w) P(wx1,,xp)P(x1,,xpw)P(w) 这个关系是最重要的,朴素就是指变量之间都是独立同分布(iid),所以 P ( x 1 , … , x p ∣ w ) P(x_1,\dots,x_p|w) P(x1,,xpw) 可以写成 P ( x 1 ∣ w ) ⋅ P ( x 2 ∣ w ) … P ( x p ∣ w ) P(x_1|w)\cdot P(x_2|w)\dots P(x_p|w) P(x1w)P(x2w)P(xpw) 现在就可以去做题目啦。
题目一般是给一个数据表,有特征a, b, c加一个标签yes或no,然后求a=1, b=0, c=1时是yes还是no(肯定表中没有这个数据的哈,不然直接读表就行了哈哈)。直接套公式: P ( y e s ∣ a = 1 , b = 0 , c = 1 ) = P ( a = 1 ∣ y e s ) P ( b = 0 ∣ y e s ) P ( c = 1 ∣ y e s ) P ( y e s ) P ( a = 1 ) P ( b = 0 ) P ( c = 1 ) P(yes|a=1,b=0,c=1) = \frac{P(a=1|yes)P(b=0|yes)P(c=1|yes)P(yes)}{P(a=1)P(b=0)P(c=1)} P(yesa=1,b=0,c=1)=P(a=1)P(b=0)P(c=1)P(a=1yes)P(b=0yes)P(c=1yes)P(yes) P ( n o ∣ a = 1 , b = 0 , c = 1 ) = P ( a = 1 ∣ n o ) P ( b = 0 ∣ n o ) P ( c = 1 ∣ n o ) P ( n o ) P ( a = 1 ) P ( b = 0 ) P ( c = 1 ) P(no|a=1,b=0,c=1) = \frac{P(a=1|no)P(b=0|no)P(c=1|no)P(no)}{P(a=1)P(b=0)P(c=1)} P(noa=1,b=0,c=1)=P(a=1)P(b=0)P(c=1)P(a=1no)P(b=0no)P(c=1no)P(no) 然后比较这俩数谁大,如yes的大,则我们估计a=1, b=0, c=1时是yes。仔细看上面式子发现分母是一样的,所以我们只用算分子就可以比较了,就是如此简单。

 
附上其他笔记的链接:
无废话的机器学习笔记(一)
无废话的机器学习笔记(二)(线性回归)
无废话的机器学习笔记(三)(梯度下降)
无废话的机器学习笔记(五)(SVM)
无废话的机器学习笔记(六)(决策树,KNN)
无废话的机器学习笔记(七)(聚类: kmeans、GMM、谱聚类)
无废话的机器学习笔记(番外)(数据集,方差-偏差,过拟合,正则化,降维)

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

全栈O-Jay

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值