AnythingLLM使用本地大模型

AnythingLLM

官网:https://anythingllm.com/desktop

下载

访问官网,根据系统下载对应的安装包进行下载
在这里插入图片描述

安装

点击安装包进行安装

配置

LLM首选项

选择ollama及自己的模型
在这里插入图片描述

嵌入选项

选择ollama及自己的模型
在这里插入图片描述

配置工作区选项

在这里插入图片描述

配置聊天设置

在这里插入图片描述
在这里插入图片描述
设置Chat Setting和Vector Database

  • Chat模式(Chat/Query):Query 设置此参数为"Query"的原因是,这样模型仅在找到文档上下文时才提供答案。这意味着模型的回答将更加依赖于检索到的相关文档内容。这样做的好处是能够保证回答的准确性和相关性,避免在没有足够信息支持的情况下生成可能不准确或无关的回答。
  • LLM温度(LLM Temperature) LLM(Large Language Model)温度参数的设置是为了控制聊天响应的"随机性"或动态性。设置该参数为0的原因是,这样可以使得模型的回答更加确定和一致。温度值越低,模型在生成回答时选择的单词或短语就越倾向于那些概率最高的,从而减少随机性和不连贯性。推荐的0值意味着模型将尽可能生成最可能的回答,而不是探索多样化的回答。
配置向量数据库

在这里插入图片描述

文档相似度阈值(Document similarity threshold) 设置文档相似度阈值是为了确定一个来源文档与聊天内容的相关性。较高的相似度分数(例如≥0.75)意味着只有与聊天内容非常相似的文档才会被考虑用于生成回答。这样做的原因是,可以确保模型在生成回答时使用的信息是高度相关的,从而提高回答的准确性和质量。通过设置较高的相似度阈值,可以过滤掉那些不太相关的文档,减少噪声,使得回答更加精准。

上传文档

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

上传好文档后与大模型对话时,会找出文档相关的内容进行回答,但是不够精确,回答的与文档内容存在偏差

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值