22、机器学习数学基础:一元函数微积分

1、O(n)与o(n)

O(n):f(x)=O(g(x))
∃ x 0 , M \exist x_0,M x0,M,使得当 x ≥ x 0 x \geq x_0 xx0有f(x) ≤ \leq Mg(x)
例如:2 x 2 = O ( x 2 ) x^2=O(x^2) x2=O(x2)

o(n):f(x)=o(g(x))
∀ ϵ ∃ x 0 \forall \epsilon \exist x_0 ϵx0,使得当 x ≥ x 0 x \geq x_0 xx0有f(x) ≤ ϵ \leq\epsilon ϵg(x)
例如:2 x 2 = o ( x 3 ) x^2=o(x^3) x2=o(x3)

x → ∞ , f ( x ) g ( x ) → 0 x\rarr\infty,\frac{f(x)}{g(x)}\rarr0 x,g(x)f(x)0
∀ ϵ ∃ x 0 \forall \epsilon \exist x_0 ϵx0,使得当 x ≥ x 0 x \geq x_0 xx0 f ( x ) g ( x ) ≤ ϵ \frac{f(x)}{g(x)}\leq\epsilon g(x)f(x)ϵ,即有f(x) ≤ ϵ \leq\epsilon ϵg(x)

2、导数与导数的运算法则

导数: lim ⁡ x → x 0 f ( x ) − f ( x 0 ) x − x 0 \lim\limits_{x \to x_0 }\frac{f(x)-f(x_0)}{x-x_0} xx0limxx0f(x)f(x0)= f ′ ( x ) f{'}(x) f(x)为导数

##对符号函数求导
str_expr="x**3-x*3"
expr=sp.sympify(str_expr)
sp.diff(expr)

乘法: ( f ( x ) g ( x ) ) ′ = f ( x ) ′ g ( x ) + f ( x ) g ( x ) ′ (f(x)g(x))'=f(x)'g(x)+f(x)g(x)' (f(x)g(x))=f(x)g(x)+f(x)g(x)
除法: ( f ( x ) g ( x ) ) ′ = f ( x ) ′ g ( x ) − f ( x ) g ( x ) ′ g 2 ( x ) (\frac{f(x)}{g(x)})'=\frac{f(x)'g(x)-f(x)g(x)'}{g^2(x)} (g(x)f(x))=g2(x)f(x)g(x)f(x)g(x)
链式法则: f ( g ( x ) ) x = x 0 ′ = f ′ ( g ( x 0 ) ) g ′ ( x 0 ) f(g(x))'_{x=x_0}=f'(g(x_0))g'(x_0) f(g(x))x=x0=f(g(x0))g(x0)

3、导数应用

导数应用1 费马定理:在区间内函数存在极值,在该点的导数为0。

导数应用2 函数逼近:导数的定义可以推出当 x → x 0 , f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) x\rarr x_0,f(x)=f(x_0)+f'(x_0)(x-x_0) xx0,f(x)=f(x0)+f(x0)(xx0)
找到 f ′ ( x 1 ) = f ( x ) − f ( x 0 ) x − x 0 f'(x_1)=\frac{f(x)-f(x_0)}{x-x_0} f(x1)=xx0f(x)f(x0)

罗尔中值定理: x 0 < x 2 , f ( x 0 ) = f ( x 2 ) = 0 ,存在 x 0 < x 1 < x 2 , f ′ ( x 1 ) = 0 x_0<x_2,f(x_0)=f(x_2)=0,存在x_0<x_1<x_2,f'(x_1)=0 x0<x2f(x0)=f(x2)=0,存在x0<x1<x2,f(x1)=0

G ( x ) = f ( x ) − [ f ( x 0 ) − ( x − x 0 x 1 − x 0 ) ( f ( x 0 ) − f ( x 1 ) ) ] , G ( x 0 ) 、 G ( x 1 ) G(x)=f(x)-[f(x_0)-(\frac{x-x_0}{x_1-x_0})(f(x_0)-f(x_1))],G(x_0)、G(x_1) G(x)=f(x)[f(x0)(x1x0xx0)(f(x0)f(x1))]G(x0)G(x1)均为0,所以存在 x 0 < x 2 < x 1 , x_0<x_2<x_1, x0<x2<x1,使得 G ′ ( x 2 ) G'(x_2) G(x2)=0,即有 f ′ ( x 2 ) = f ( x 1 ) − f ( x 0 ) x 1 − x 0 f'(x_2)=\frac{f(x_1)-f(x_0)}{x_1-x_0} f(x2)=x1x0f(x1)f(x0)

f ( x ) ≈ f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) f(x)\approx f(x_0)+f'(x_0)(x-x_0) f(x)f(x0)+f(x0)(xx0) f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + o ( x − x 0 ) f(x)= f(x_0)+f'(x_0)(x-x_0)+o(x-x_0) f(x)=f(x0)+f(x0)(xx0)+o(xx0)

拉格朗日中值定理 f ( x ) = f ( x 0 ) + f ′ ( x 1 ) ( x − x 0 ) , x 1 ∈ [ x 0 , x ] f(x)= f(x_0)+f'(x_1)(x-x_0),x_1 \in[x_0,x] f(x)=f(x0)+f(x1)(xx0)x1[x0,x]

洛必达法则:若 lim ⁡ x → x 0 f ( x ) = 0 , lim ⁡ x → x 0 g ( x ) = 0 \lim\limits_{x \to x_0 }f(x)=0,\lim\limits_{x \to x_0 }g(x)=0 xx0limf(x)=0xx0limg(x)=0,则

lim ⁡ x → x 0 f ( x ) g ( x ) = lim ⁡ x → x 0 f ′ ( x ) g ′ ( x ) \lim\limits_{x \to x_0 }\frac{f(x)}{g(x)}=\lim\limits_{x \to x_0 }\frac{f'(x)}{g'(x)} xx0limg(x)f(x)=xx0limg(x)f(x)

洛必达法则证明: f ( x 0 ) = 0 , g ( x 0 ) = 0 , f ( x ) − f ( x 0 ) g ( x ) − g ( x 0 ) = f ′ ( x 1 ) g ′ ( x 1 ) , x 1 ∈ [ x 0 , x ] f(x_0)=0,g(x_0)=0,\frac{f(x)-f(x_0)}{g(x)-g(x_0)}=\frac{f'(x_1)}{g'(x_1)},x_1 \in[x_0,x] f(x0)=0g(x0)=0g(x)g(x0)f(x)f(x0)=g(x1)f(x1)x1[x0,x]推出

lim ⁡ x → x 0 f ( x ) − f ( x 0 ) g ( x ) − g ( x 0 ) = lim ⁡ x 1 → x 0 f ′ ( x 1 ) g ′ ( x 1 ) \lim\limits_{x \to x_0 }\frac{f(x)-f(x_0)}{g(x)-g(x_0)}=\lim\limits_{x_1 \to x_0 }\frac{f'(x_1)}{g'(x_1)} xx0limg(x)g(x0)f(x)f(x0)=x1x0limg(x1)f(x1)

运用洛必达法则有: lim ⁡ x → x 0 f ( x ) − f ( x 0 ) − ( x − x 0 ) f ′ ( x 0 ) x − x 0 = f ′ ( x ) − f ′ ( x 0 ) 1 = 0 \lim\limits_{x \to x_0 }\frac{f(x)-f(x_0)-(x-x_0)f'(x_0)}{x-x_0}=\frac{f'(x)-f'(x_0)}{1}=0 xx0limxx0f(x)f(x0)(xx0)f(x0)=1f(x)f(x0)=0 f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + o ( x − x 0 ) f(x)= f(x_0)+f'(x_0)(x-x_0)+o(x-x_0) f(x)=f(x0)+f(x0)(xx0)+o(xx0)得以证明

级数: f ( x ) = ∑ i = 0 ∞ a i x i f(x)=\sum_{i=0}^\infty a_ix^i f(x)=i=0aixi

∀ x = x 0 ,有 f ( x 0 ) = lim ⁡ n → ∞ ∑ i = 0 N a i x i \forall x=x_0,有f(x_0)=\lim\limits_{n \to \infty}\sum_{i=0}^Na_ix^i x=x0,有f(x0)=nlimi=0Naixi

f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ( x − x 0 ) 2 + o ( x − x 0 ) 2 f(x)= f(x_0)+f'(x_0)(x-x_0)+\frac{f''(x_0)}{2}(x-x_0)^2+o(x-x_0)^2 f(x)=f(x0)+f(x0)(xx0)+2f′′(x0)(xx0)2+o(xx0)2

lim ⁡ x → x 0 f ( x ) − f ( x 0 ) − ( x − x 0 ) f ′ ( x 0 ) − ( x − x 0 ) 2 f ′ ′ ( x ) 2 ( x − x 0 ) 2 = lim ⁡ x → x 0 f ′ ( x ) − f ′ ( x 0 ) − ( x − x 0 ) f ′ ′ ( x 0 ) 2 ( x − x 0 ) = f ′ ′ ( x ) − f ′ ′ ( x 0 ) 2 = 0 \lim\limits_{x \to x_0}\frac{f(x)-f(x_0)-(x-x_0)f'(x_0)-(x-x_0)^2\frac{f''(x)}{2}}{(x-x_0)^2}=\lim\limits_{x \to x_0}\frac{f'(x)-f'(x_0)-(x-x_0)f''(x_0)}{2(x-x_0)}=\frac{f''(x)-f''(x_0)}{2}=0 xx0lim(xx0)2f(x)f(x0)(xx0)f(x0)(xx0)22f′′(x)=xx0lim2(xx0)f(x)f(x0)(xx0)f′′(x0)=2f′′(x)f′′(x0)=0推出。

f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ( x − x 0 ) 2 + . . . + f N ( x 0 ) N ! ( x − x 0 ) N + o ( ( x − x 0 ) n ) f(x)= f(x_0)+f'(x_0)(x-x_0)+\frac{f''(x_0)}{2}(x-x_0)^2+...+\frac{f^N(x_0)}{N!}(x-x_0)^N+o((x-x_0)^n) f(x)=f(x0)+f(x0)(xx0)+2f′′(x0)(xx0)2+...+N!fN(x0)(xx0)N+o((xx0)n)

(下)凸函数:连接函数任意两点的直线,两点之间直线上的所有点比函数大。
上凸函数:连接函数任意两点的直线,两点之间直线上的所有点比函数小
凸函数的f’‘(x)>0,上凸函数的f’'(x)<0,有且只有一个极值点。
(下)凸函数:任意两点为横坐标a、b,ab之间的点c横坐标 a + ( b − a ) θ , θ ∈ [ 0 , 1 ] a+(b-a)\theta,\theta \in [0,1] a+(ba)θθ[0,1],直线值为 f ( a ) + θ ( f ( b ) − f ( a ) ) f(a)+\theta(f(b)-f(a)) f(a)+θ(f(b)f(a)),函数值为 f ( a + ( b − a ) θ ) f(a+(b-a)\theta) f(a+(ba)θ),当 f ( a ) + θ ( f ( b ) − f ( a ) ) > f ( a + ( b − a ) θ ) f(a)+\theta(f(b)-f(a))>f(a+(b-a)\theta) f(a)+θ(f(b)f(a))>f(a+(ba)θ)时,为凸函数。

c为凸函数的极值点,e为c、b之间的一点,要证明 f ′ ′ ( x ) = lim ⁡ e → c f ′ ( e ) − f ′ ( c ) e − c ≥ 0 f''(x)=\lim\limits_{e \to c }\frac{f'(e)-f'(c)}{e-c} \geq0 f′′(x)=eclimecf(e)f(c)0,e-c大于0,只需证明 f ′ ( e ) − f ′ ( c ) f'(e)-f'(c) f(e)f(c)>=0

根据拉格朗日中值定理有 f ( b ) − f ( c ) b − c = f ′ ( e ) \frac{f(b)-f(c)}{b-c}=f'(e) bcf(b)f(c)=f(e) f ′ ( c ) = lim ⁡ a → c f ( a ) − f ( c ) a − c f'(c)=\lim\limits_{a \to c }\frac{f(a)-f(c)}{a-c} f(c)=aclimacf(a)f(c)

c = a + ( b − a ) θ , f ′ ( e ) − f ′ ( c ) = f ( b ) − f ( c ) b − c − f ( a ) − f ( c ) a − c = f ( b ) − f ( c ) ( 1 − θ ) ( b − a ) − f ( c ) − f ( a ) θ ( b − a ) = θ f ( b ) − θ f ( c ) − ( 1 − θ ) ( f ( c ) − f ( a ) ) θ ( 1 − θ ) ( b − a ) c=a+(b-a)\theta,f'(e)-f'(c)=\frac{f(b)-f(c)}{b-c}-\frac{f(a)-f(c)}{a-c}=\frac{f(b)-f(c)}{(1-\theta)(b-a)}-\frac{f(c)-f(a)}{\theta(b-a)}=\frac{\theta f(b)-\theta f(c)-(1-\theta)(f(c)-f(a))}{\theta(1-\theta)(b-a)} c=a+(ba)θf(e)f(c)=bcf(b)f(c)acf(a)f(c)=(1θ)(ba)f(b)f(c)θ(ba)f(c)f(a)=θ(1θ)(ba)θf(b)θf(c)(1θ)(f(c)f(a))

θ ( 1 − θ ) ( b − a ) ≥ 0 \theta(1-\theta)(b-a) \geq0 θ(1θ)(ba)0 θ f ( b ) − θ f ( c ) − ( 1 − θ ) ( f ( c ) − f ( a ) ) = θ f ( b ) + ( 1 − θ ) f ( a ) − f ( c ) \theta f(b)-\theta f(c)-(1-\theta)(f(c)-f(a))=\theta f(b)+(1-\theta)f(a)-f(c) θf(b)θf(c)(1θ)(f(c)f(a))=θf(b)+(1θ)f(a)f(c)

a、b两点之间直线的值为 f ( a ) + θ ( f ( a ) − f ( b ) ) f(a)+\theta(f(a)-f(b)) f(a)+θ(f(a)f(b))必然大于函数 f ( c ) f(c) f(c) f ′ ′ ( x ) ≥ 0 f''(x)\geq0 f′′(x)0得证。
附:两点式线性函数:(x-x1)/(x2-x1)=(y-y1)/(y2-y1)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值