InstantID:一张照片,无需训练,秒级个人写真生成

InstantID是一种强大的图像生成技术,利用IdentityNet结合语义和空间条件,能从单张参考图像生成定制化面部和地标图像,具有高保真度和文本编辑功能。相比同类产品,如IP-Adapter和PhotoMaker,InstantID在融合度和文本控制上更具优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 引言

InstantID是一种基于扩散模型的强大解决方案。设计的即插即用模块仅使用单个面部图像就能熟练地处理各种风格的图像个性化,同时确保高保真度。它的核心是设计了一个新颖的 IdentityNet,通过强加语义和弱空间条件,将面部和地标图像与文本提示相结合来引导图像生成。

仅给定一张参考 ID 图像,InstantID 的目标是从单个参考 ID 图像生成具有各种姿势或风格的定制图像,同时确保高保真度。它包含三个关键组成部分:

  • 捕获语义人脸信息的 ID 嵌入;
  • 具有解耦交叉注意力的轻量级适配模块,方便使用图像作为视觉提示
  • IdentityNet,通过额外的空间控制对参考面部图像的详细特征进行编码
    在这里插入图片描述

2. InstantID功能介绍

功能1:一张人脸生成任意风格的图片

在这里插入图片描述
在这里插入图片描述

功能2:可编辑性

通过文本提示词来编辑生成的图片,比如改变图像中人物的表情、背景或其他元素。也可以借助 ControlNet插件更加精准地控制图像的生成细节,实现个性化定制。
在这里插入图片描述

功能3:多重参考

允许使用多张参考图像来生成一个新图像,从而增强生成图像的丰富性和多样性。
在这里插入图片描述
对于多个参考图像,取 ID 嵌入的平均平均值作为图像提示。即使只有一张参考图像,InstantID 也能取得良好的结果。
在这里插入图片描述
InstantID 也可以灵活支持将身份属性添加到非人类角色中。

3. InstantID与同类产品比较

比较1:InstantID 与 IP-Adapter/IP-Adapter-FaceID/PhotoMaker

在这里插入图片描述
与 IP-Adapter (IPA)、IP-Adapter-FaceID 和最新的 PhotoMaker 进行比较。其中,PhotoMaker需要训练UNet的LoRA参数。可以看到,PhotoMaker和IP-Adapter-FaceID都实现了良好的保真度,但文本控制能力有明显的退化。相比之下,InstantID 实现了更好的保真度并保留了良好的文本可编辑性(面孔和样式更好地融合)。

比较2:InstantID与LORA

在这里插入图片描述
InstantID无需任何训练就可以像 LoRA 一样取得有竞争力的效果。

比较3:InstantID与InsightFace Swapper

在这里插入图片描述
在非写实风格中,InstantID在面部和背景的融合上更加灵活。

4. InstantID使用体验

下面我们在huggingface网站上面使用体验一下。
在这里插入图片描述
在最上面有操作步数说明,核心操作只需要4步。

【第一步】:个人图片的上传

对于多人图像,我们将只检测最大的脸。确保脸部不要太小,没有明显的遮挡或模糊。

比如我们这里上传一张紫霞仙子的照片。
在这里插入图片描述
【第二步】: (可选) 上传另一个人的图像作为参考姿势

如果没有上传,我们将使用第一人称图像提取地标。如果在步骤1中使用裁剪过的脸,建议上传它来提取一个新的姿势。

【第三步】:提示词的编写

提示词:A beautiful woman was sitting on the grass in the park
在这里插入图片描述
【第四步】:图片的生成

我们先选择不同的风格,然后点击"Submit"按钮,就可以生成图片了。我们这里看一下不同风格的图片效果。

风格1:WaterColor(水彩)
在这里插入图片描述
从生产图片效果来看,人物图像保持得非常统一,和原图片的相似度非常高。

相关说明
(1)如果对相似度不满意,可以适当增加controlnet_conditioning_scale (IdentityNet)和ip_adapter_scale (Adapter)的权重。
在这里插入图片描述
(2)如果生成的图像过度饱和,请减小 ip_adapter_scale的权重。如果不起作用,请减小controlnet_conditioning_scale的权重。

(3)如果文本提示词不符合预期,减小ip_adapter_scale的权重。

(4)选择一个好的基本模型是很重要的。

### 如何利用AI技术生成写真片的方法和工具 #### 方法概述 通过现有的技术和工具,可以实现快速生成高质量的人像写真。一种常见的方式是使用专门设计的AI平台或插件完成这一过程。例如,可以通过即梦AI创作人像摄影照片并结合云服务平台的工作流来处理像[^1]。此外,还有特定的WebUI插件如EasyPhoto,它能够基于用户的输入数据训练个性化模型,并生成具有高度真实感的照片[^2]。 #### 工具推荐 以下是几种常用的工具和技术: 1. **即梦AI** 即梦AI是一个专注于创意内容生产的平台,在其中可以轻松创建逼真的虚拟人物形象。用户只需提供基础素材或者描述需求即可获得满意的结果。 2. **EasyPhoto (WebUI 插件)** EasyPhoto 是一款功能强大的 WebUI 插件,允许使用者上传多张个人肖像作为训练集,从而构建专属的数字化身。经过适当数量(通常为5到20张) 的样本训练之后,该程序能够在推理阶段自动生成新的像。 3. **揽睿星舟 平台** 这一云端服务提供了完整的解决方案链路——从初始材料准备到最后成品输出都涵盖在内。特别适合那些希望进一步定制化其作品的专业人士。 4. **InstantID 模型** InstantID 属于开放源码社区中的明星项目之一,以其卓越的表现力闻名遐迩。它可以将任意普通人的面孔转换成不同艺术风格下的表现形式,非常适合应用于商业广告等领域内的“AI模特”角色塑造上[^3]。 #### 技术流程详解 为了达到最佳效果,整个操作大致分为以下几个方面考虑: - 数据收集:尽可能多地获取清晰正面照用于后续建模分析;注意避免复杂背景干扰以及配饰遮挡等问题存在。 - 训练配置:合理设置参数范围以优化效率同时兼顾质量保障。比如对于EasyPhoto来说,建议采用至少五幅以上但不超过二十幅左右的有效样本来执行监督学习任务。 - 后期编辑调整:如果有必要的话,则可借助其他第三方应用程序来进行额外修饰完善最终产物外观特征等方面细节之处。 ```python # 示例代码展示如何调用某些API接口实现自动化批量生产流程的一部分逻辑片段 import requests def generate_portrait(api_key, input_image_path): url = 'https://example.com/api/generate' headers = {'Authorization': f'Bearer {api_key}'} with open(input_image_path, 'rb') as file: response = requests.post(url, files={'image': file}, headers=headers) if response.status_code == 200: output_file_name = './output/generated_portrait.jpg' with open(output_file_name, 'wb') as out_file: out_file.write(response.content) return True else: print(f"Error: Unable to process request ({response.status_code})") return False ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值