手动实现blending算法

本文介绍了如何手动实现Blending算法,通过将多个个体学习器的预测结果融合,提升模型性能。具体步骤包括数据集划分、个体学习器训练、验证集结果收集、新特征矩阵构建以及元学习器的训练和测试。示例中使用了Logistic Regression、Random Forest、Gradient Boosting Decision Tree、Decision Tree、KNN等作为个体学习器,并用Random Forest作为元学习器。
摘要由CSDN通过智能技术生成

https://www.cnblogs.com/lipu123/p/17563377.html

#手动实现blending算法
def BlendingClassifier(X,y,estimators,final_estimator,test_size=0.2,vali_size=0.4):
    #X,y,整体的数据会被分为训练集,测试集,验证集,
    #estimators: level0的个体学习器,输入格式形如sklearn中要求的[(名字,算法)(名字,算法)...]
    #test_size:测试集占全数据集的比例
    #vali_size:验证集站全数据集的比例
    X_,Xtest,y_,ytest=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值