3.3 自动驾驶的安全结构(第三章 自动驾驶汽车的安全保障)

本文介绍了自动驾驶汽车安全的两个重要分析方法:故障树分析(FTA)和故障模式及影响分析(FMEA)。FTA自顶向下分析系统故障,而FMEA自底向上评估组件失效的影响。通过FMEA的优先级值量化故障,以便优化设计。此外,还提及了功能安全(FUSA)和预期功能安全(SOTIF)在ISO标准中的应用,以确保硬件和软件的安全性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

3.3 自动驾驶的安全结构(Safety Frameworks for Self Driving)

学习内容:

**1. 通用的安全架构**
	事故树(故障树):Fault Trees Analysis (FTA)
	故障模式和影响风险:Failure Modes and Effects Analyses (FMEA)
	危险及可操作性分析:Hazard and Operability Analysis (HAZOP)
**2. 汽车安全结构**
	功能安全
	预期的功能安全

1. 故障树分析

故障树可以用作初步的分析框架,并且可以稳步扩展,以包含尽可能多的必要细节。故障树是自顶向下的流程,在此流程中,我们分析系统可能出现的故障(要避免的),然后确定故障出现的所有方式和较低级别系统中的故障。

故障树的顶部节点是根事件或顶部事件。

故障树中的中间节点是逻辑门,它们定义根事件的可能原因。

分解继续到可以详细定义此类事件概率的级别。可以分析结合概率使用布尔逻辑的法则来进行故障树分析,评估根本原因事件的总体概率和最导致其发生的原因。
在这里插入图片描述

让我们考虑一个简单的例子,并以车祸作为根事件。

汽车事故的原因可能被分解为软件故障或硬件故障,以及我们在之前的视频中描述过的许多其他可能性中的危险类。简单地说,硬件故障可能是由于制造缺陷或材料缺陷造成的。同样,如果我们被黑客入侵,软件错误也可能是由于感知代码故障或网络安全问题造成的。从那里,我们可以继续到软件子系统和这些子系统中的具体计算,这些子系统在每个连续的分支中加深树的深度。

最终,我们将达到特定的故障率,我们可以分配每小时或每英里的出现概率。现在我们已经到达了故障树的叶节点。然后使用逻辑门结构,我们可以显式地计算总体故障率的统计给定评估的个别叶节点故障率。用来向上传播这些概率的操作与事件遵循集合理论时的概率规则相同。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值