Calculus of Variations:变分计算

泛函

wiki

泛函(functional)指以函数构成的向量空间为定义域,实数为值域为的“函数”,即某一个依赖于其它一个或者几个函数确定其值的量,往往被称为“函数的函数”。

函数代表了数到数的映射,而泛函代表了函数到数的映射,即给定一个函数,泛函能够得到一个数

欧拉-拉格朗日方程

原理及证明

求解以积分形式表示的量的最小化或者最大化

当泛函 取极值时,函数 y ( x ) y(x) y(x)应当满足欧拉-拉格朗日方程:
∂ ∂ y F ( x , y , y x ) − d d x ( ∂ ∂ y x F ( x , y , y x ) ) = 0 \frac {\partial }{\partial y}F(x,y,y_x)-\frac {d}{dx}(\frac {\partial }{\partial y_x}F(x,y,y_x))=0\\ yF(x,y,yx)dxd(yxF(x,y,yx))=0
简单证明:

​ 设存在泛函:
J ( y ) = ∫ a b F ( x , y , y x ) J(y) = \int_a^bF(x,y,y_x) J(y)=abF(x,y,yx)
我们假设能够使 J ( y ) J(y) J(y) 取得极值的函数 y y y u ( x ) u(x) u(x) 。那么在区间 [ a , b ] [a,b] [a,b] 上,定义函数族
y ( x ) = u ( x ) + ϵ η ( x ) y(x)=u(x)+\epsilon\eta(x) y(x)=u(x)+ϵη(x)
其中 ϵ \epsilon ϵ 是一个实参数, η ( x ) \eta(x) η(x) 定义为函数 y ( x ) y(x) y(x) u ( x ) u(x) u(x) 的差值。由此可以看出 η ( x ) \eta(x) η(x) 应当满足 η ( a ) = η ( b ) = 0 \eta(a)=\eta(b)=0 η(a)=η(b)=0 ,那么 y ( x ) y(x) y(x) 当然也满足边界条件,也代表两点之间的一条路径,并且在确定的 η ( x ) \eta(x) η(x) 下,其函数表达式只与 ϵ 有关。

那么对于任意确定的函数 η ( x ) \eta(x) η(x), 泛函 J ( y ) = J ( u + ϵ η ) = J ( ϵ ) J(y)=J(u+\epsilon\eta)=J(\epsilon) J(y)=J(u+ϵη)=J(ϵ) ,应当只是参数 ϵ \epsilon ϵ 的函数,且 d J ( ϵ ) d ϵ ∣ ϵ = 0 \frac {dJ(\epsilon)}{d\epsilon}|_\epsilon=0 dϵdJ(ϵ)ϵ=0 ϵ = 0 \epsilon=0 ϵ=0 时, y ( x ) = u ( x ) y(x)=u(x) y(x)=u(x) ,泛函 J ( y ) J(y) J(y) 取极值)。

为了要满足上面的条件 d J ( ϵ ) d ϵ ∣ ϵ = 0 \frac {dJ(\epsilon)}{d\epsilon}|_\epsilon=0 dϵdJ(ϵ)ϵ=0,我们首先来计算在任意确定的 η ( x ) \eta(x) η(x)的情况下计算 d J ( ϵ ) d ϵ \frac {dJ(\epsilon)}{d\epsilon} dϵdJ(ϵ)
d J ( ϵ ) d ϵ = d d ϵ ∫ a b F ( x , y , y x ) d ( x ) = ∫ a b ∂ F ( x , y , y x ) ∂ ϵ d ( x ) = ∫ a b ∂ F ∂ y ∂ y ∂ ϵ + ∂ F ∂ y x ∂ y x ∂ ϵ d ( x ) ( 链式求导 ) = ∫ a b ∂ F ∂ y η ( x ) + ∂ F ∂ y x η ′ ( x ) d ( x ) ( η ′ ( x ) = d η ( x ) / d x ) = ∫ a b ∂ F ∂ y η ( x ) + ∂ F ∂ y x d η ( x ) = ∫ a b ∂ F ∂ y η ( x ) + η ( x ) ∂ F ∂ y x ∣ a b − ∫ a b d d x ( ∂ F ∂ y x ) η ( x ) d x ( 分部积分 ) = ∫ a b [ ∂ F ∂ y − d d x ( ∂ F ∂ y x ) ] η ( x ) d x ( η ( a ) = η ( b ) = 0 ) \begin{align} \frac {dJ(\epsilon)}{d\epsilon} & =\frac d{d\epsilon}\int_a^bF(x,y,y_x)d(x)\\ &=\int_a^b\frac {\partial F(x,y,y_x)}{\partial\epsilon}d(x)\\ &=\int_a^b\frac {\partial F}{\partial y}\frac {\partial y}{\partial\epsilon} + \frac {\partial F}{\partial y_x}\frac {\partial y_x}{\partial\epsilon} d(x)\qquad(链式求导)\\ &=\int_a^b\frac {\partial F}{\partial y}\eta(x) + \frac {\partial F}{\partial y_x}\eta'(x) d(x)\qquad(\eta'(x)=d\eta(x)/dx)\\ &=\int_a^b\frac {\partial F}{\partial y}\eta(x) + \frac {\partial F}{\partial y_x} d\eta(x)\\ &=\int_a^b\frac {\partial F}{\partial y}\eta(x) + \eta(x)\frac {\partial F}{\partial y_x}\big|_a^b-\int_a^b\frac d{dx}(\frac {\partial F}{\partial y_x})\eta(x)dx\qquad (分部积分)\\ &=\int_a^b[\frac {\partial F}{\partial y} -\frac d{dx}(\frac {\partial F}{\partial y_x})]\eta(x)dx\qquad(\eta(a)=\eta(b)=0)\\ \end{align} dϵdJ(ϵ)=dϵdabF(x,y,yx)d(x)=abϵF(x,y,yx)d(x)=abyFϵy+yxFϵyxd(x)(链式求导)=abyFη(x)+yxFη(x)d(x)(η(x)=dη(x)/dx)=abyFη(x)+yxFdη(x)=abyFη(x)+η(x)yxF ababdxd(yxF)η(x)dx(分部积分)=ab[yFdxd(yxF)]η(x)dx(η(a)=η(b)=0)
ϵ = 0 \epsilon=0 ϵ=0
d J ( ϵ ) d ϵ ∣ ϵ = ∫ a b [ ∂ F ∂ y − d d x ( ∂ F ∂ y x ) ] η ( x ) d x \frac {dJ(\epsilon)}{d\epsilon}|_\epsilon=\int_a^b[\frac {\partial F}{\partial y} -\frac d{dx}(\frac {\partial F}{\partial y_x})]\eta(x)dx dϵdJ(ϵ)ϵ=ab[yFdxd(yxF)]η(x)dx
由于 η ( x ) \eta(x) η(x) 是任意的, ∂ F ∂ y − d d x ( ∂ F ∂ y x ) \frac {\partial F}{\partial y} -\frac d{dx}(\frac {\partial F}{\partial y_x}) yFdxd(yxF) F F F 给定后是一个固定的函数。如果 ∂ F ∂ y − d d x ( ∂ F ∂ y x ) \frac {\partial F}{\partial y} -\frac d{dx}(\frac {\partial F}{\partial y_x}) yFdxd(yxF) 不等于0,被积函数就是任意的,无法保证积分恒为0。因此
∂ F ∂ y − d d x ( ∂ F ∂ y x ) = 0 \frac {\partial F}{\partial y} -\frac d{dx}(\frac {\partial F}{\partial y_x})=0 yFdxd(yxF)=0
得证.

多变量系统下的变分方程

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值