【AAAI】用于网约车需求预测的时空多图卷积网络

#AAAI#

今天分享的是AAAI 2019的一篇论文《用于网约车需求预测的时空多图卷积网络》

原文链接:https://ojs.aaai.org//index.php/AAAI/article/view/4247

摘要

区域级需求预测是网约车服务的一项重要任务。区域间具有复杂的时空依赖性,现有的方法主要侧重于对空间相邻区域之间的欧式相关关系进行建模,而作者发现,距离可能较远的区域之间的非欧式相关关系对于准确预测也至关重要。为此本文章提出了时空多图卷积网络(ST-MGCN)。首先将区域间的非欧式成对相关关系编码为多个图,然后利用多图卷积对这些相关关系进行建模。为了利用全局上下文信息对时间相关性进行建模,作者进一步提出了上下文门控循环神经网络,该网络利用上下文感知的门控机制对不同的历史观测值进行重新加权。作者在两个真实的大型网约车需求数据集上评估了所提出的模型,与先进的基准模型相比,该模型提高了10%以上。

1.介绍

区域级网约车需求预测的目标是根据历史观测,预测城市区域未来的需求。这一任务的挑战性主要在于复杂的时空相关性。一方面,不同区域之间存在复杂的依赖关系。另一方面,不同的时间观测值之间也存在非线性依赖关系。

在目前的时空相关性建模中,有两个重要的方面被忽略了。
首先,这些方法主要针对不同区域间的欧氏相关关系进行建模,但作者发现非欧氏两两相关关系对准确预测也至关重要。下图显示了一个示例。对于预测区域1:不仅区域2被认为是重要的,区域3、4也被认为很重要。因为:(1)区域2是区域1的空间相邻区域。(2)区域3与区域1具有相似功能,它们都在学校和医院附近,所以区域3是是区域1的功能相似区域。(3)区域4通过公路与区域1直接相连,所以区域1还可能受到区域4的影响,区域4是区域1的交通连接区域。

其次,在这些方法中,当使用RNN对时间相关性进行建模时,每个区域都是独立处理的,或者只基于局部信息。然而,作者认为全局和上下文信息也很重要。例如,全局网约车需求的增加/减少通常表明一些事件的发生,这些事件将影响未来的需求。具体来说,比如早晚高峰、节假日这样的事件会对用车数产生比较大的影响。

2.贡献

为了解决以上两点问题,作者提出了一种新的深度学习模型,称为时空多图卷积网络(ST-MGCN)。

  • 在网约车需求预测问题中,识别出了区域间的非欧式相关关系,并提出使用多个图对其进行编码,进一步利用提出的多图卷积显式地建模了这些相关性。
  • 提出了基于上下文门控的RNN(CGRNN)模型,在时序依赖关系建模时引入了全局上下文信息。
  • 在两个真实的大型网约车需求数据集上评估了所提出的模型,与基准模型相比,该模型提高了10%以上。

3.算法框架

本文章的算法框架如图:

作者将区域间的三种关系类型表示为多个图,图的顶点表示区域,边表示区域间的成对关系。第一步:使用多个图来编码区域之间的成对相关性。(1)邻域图,编码空间邻近性,(2)区域功能相似图,它对区域周围兴趣点的相似性进行编码,(3)交通连通性图,它编码了遥远地区之间的连通性。第二步:用上下文门控RNN汇总不同的观察结果。第三步:多图卷积。最后,利用全连接层进行特征融合转化为预测。

下面详细介绍这几个步骤。

第一步:用图对区域间的三种相关性进行建模。

(1)邻域图:根据空间邻近性来定义。边的定义如下:

A N , i j = { 1 ,   v i   a n d   v j   a r e   a d j a c e n t 0 ,   o t h e r w i s e   ( 1 ) A_{N,ij}= \begin{cases} 1,\ v_{i}\ and\ v_{j}\ are\ adjacent\\ 0,\ otherwise \end{cases} \ (1) AN,ij={1, vi and vj are adjacent0, otherwise (1)

(2)功能相似图:区域功能可以用其周围每个类别的POIs来表征,两个顶点(区域)之间的边定义为POI相似性,定义如下:

A S , i , j = s i m ( P v i , P v j ) ∈ [ 0 , 1 ]   ( 2 ) A_{S,i,j}=sim(P_{v_i},P_{v_j})\in[0,1]\ (2) AS,i,j=sim(Pvi,Pvj)[0,1] (2)

(3)交通连通性图:将道路直接相连的区域定义为“连通”,对应的边定义为:

A C , i , j = m a x ( 0 , c o n n ( v i , v j ) − A N , i , j ) ∈ { 0 , 1 }   ( 3 ) A_{C,i,j}=max(0,conn(v_i,v_j)-A_{N,i,j})\in\{0,1\}\ (3) AC,i,j=max(0,conn(vi,vj)AN,i,j){0,1} (3)

第二步:用上下文门控RNN汇总不同的观察结果——将T个时间步的历史数据融合为一张图。

可以看到左上角为输入:T指T个时间步,V指方块的高(代表所有节点),P指方块的宽(是每个节点进行图嵌入出来的高维表示)。

之后,使用公式4——利用拉普拉斯,进行K阶图卷积运算。

X ^ ( t ) = [ X ( t ) , F G K ′ ( X ( t ) ) ] f o r   t = 1 , 2 , ⋅ ⋅ ⋅ T   ( 4 ) \hat{X}^{(t)}=[X^{(t)},F_G^{K'}(X^{(t)})]for\ t=1,2,· · ·T\ (4) X^(t)=[X(t),FGK(X(t))]for t=1,2,⋅⋅⋅T (4)

公式5——使用全局平均池化Fpool产生对每个时间观察结果的总结。

z ( t ) = F p o o l ( X ^ ( t ) ) = 1 ∣ V ∣ ∑ i = 1 ∣ V ∣ X ^ i , : ( t ) f o r   t = 1 , 2 , ⋅ ⋅ ⋅ T   ( 5 ) z^{(t)}=F_{pool}(\hat{X}^{(t)})=\frac {1}{|V|}\sum_{i=1}^{|V|}\hat{X}_{i,:}^{(t)}for\ t=1,2,· · ·T\ (5) z(t)=Fpool(X^(t))=V1i=1VX^i,:(t)for t=1,2,⋅⋅⋅T (5)

公式6——利用注意力运算对向量z进行非线性变换,生成权值s。δ和σ分别是ReLU和sigmoid函数。

s = σ ( W 2 δ ( W 1 z ) )   ( 6 ) s=\sigma(W_2\delta(W_1z))\ (6) s=σ(W2δ(W1z)) (6)

公式7——将s应用于每个时间步进行加权。

X ~ ( t ) = X ( t ) ◦ s ( t )   f o r   t = 1 , 2 , ⋅ ⋅ ⋅ T   ( 7 ) \tilde{X}^{(t)}={X}^{(t)}◦s^{(t)}\ for\ t=1,2,· · ·T\ (7) X~(t)=X(t)s(t) for t=1,2,⋅⋅⋅T (7)

此时,形成了左下角对时间步加权后的结构。

一般,每个节点都需要训练一个RNN,来使用过去T个时间步预测未来T+1个时间步。但本文对所有节点应用一个RNN模型,从而促进了模型的泛化,降低模型的复杂度。

所以,得到对时间步进行加权后的多张图后,文章使用公式8:用权值共享RNN将多张图融合为了一张图。

H i , : = R N N ( X ~ i , : ( 1 ) , ⋅ ⋅ ⋅ , X ~ i , : ( T ) ; W 3 )   f o r   i = 1 , ⋅ ⋅ ⋅ , ∣ V ∣   ( 8 ) H_{i,:}=RNN(\tilde{X}_{i,:}^{(1)},· · ·,\tilde{X}_{i,:}^{(T)};W_3)\ for\ i=1,· · ·,|V|\ (8) Hi,:=RNN(X~i,:(1),⋅⋅⋅,X~i,:(T);W3) for i=1,⋅⋅⋅,V (8)

第三步:利用多图卷积来捕获空间依赖性

利用构建的邻域图、功能相似图、交通连通性图,使用公式9进行卷积。

X l + 1 = σ ( ⨆ A ∈ A f ( A ; θ i ) X l W l )   ( 9 ) X_{l+1}=\sigma(\bigsqcup_{A\in\mathbb{A}}f(A;\theta_i)X_lW_l)\ (9) Xl+1=σ(AAf(A;θi)XlWl) (9)

其中, f ( A ; θ i ) f(A;θ_i) f(A;θi)为拉普拉斯算子L的K阶多项式函数,K表示 v i v_i vi通过K步能够到达 v j v_j vj

所以该算法的总体流程为:

  • 提取三张关系图。
  • 将每张关系图的多个时间步融合为一个时间步,此时得到只含有一个时间步的三张图。
  • 对三张图分别进行图卷积。
  • 将结果进行特征融合。

4.实验

该图为不同的叫车需求预测方法的性能比较。

ST-MGCN在两个数据集上的所有指标都达到了最佳的性能。

5.总结

  • 本文提出了一种新的模型,使用多个图编码区域之间的非欧几里得相关性。进一步利用上下文门控机制增强了循环神经网络,从而在时间建模过程中加入了全局上下文信息。
  • 当在两个大规模的真实世界叫车需求数据集上进行评估时,所提出的方法取得了明显更好的效果。
  • 未来改进方向:(1)评估所提出的模型对其他时空预测任务的影响;(2)将所提出的方法扩展到多步序列预测。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值