自动化RAG端到端测评框架---RAGAS:核心思想解读与源代码部分解析

本来觉得是一个简单的用LLM来生成评分的工作,但细看一下还是蛮有意思的。写了一些初级的内容,适合想要了解这一工作思想的朋友们。

官方网站:https://docs.ragas.io/en/latest/concepts/metrics/available_metrics/context_precision/

1. 忠实性

定义:如果答案中的主张可以从上下文c(q)中推断出来,那么答案as(q)就忠实于上下文c(q)

为了估计忠实度,首先使用LLM提取一组语句S(as(q)),这一步的目的是将较长的句子分解成较短且重点更突出的断言。

通过下面的两个prompt得出。
第一段prompt
得出上面的结果后,调用这个

然后,再将检索到的上下文context,和statement一起给出,让模型来判断有多少statement是可以从context中得出的,来计算忠诚度。

最终忠实度得分 F F F的计算公式为 F = ∣ V ∣ / ∣ S ∣ F=|V|/|S| F=V∣/∣S,其中 ∣ V ∣ |V| V是根据LLM得到支持的语句数,而 ∣ S ∣ |S| S是语句总数。

2. 答案相关性

定义:如果答案as(q)以适当的方式直接回答了问题,就认为答案as(q)是相关的。

为了估算答案相关性,对于给定的答案as(q),促使LLM根据as(q)生成n个潜在问题qi,如下所示:

在这里插入图片描述

利用OpenAI API提供的文本嵌入ada-002模型获取所有问题的嵌入。对于每个qi,计算与原始问题q的相似度(q,qi),即相应嵌入之间的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值