AI:Numpy的多维数组ndarray的基本使用

本文详细介绍了NumPy库中ndarray对象的属性(如shape、ndim、dtype等),展示了如何理解和操作数组的形状以及数据类型。此外,还涵盖了逻辑运算、通用判断函数(如np.all、np.any)、统计运算(如np.max、np.min等)的使用方法。
摘要由CSDN通过智能技术生成

N维数组-ndarray


1 ndarray的属性

数组属性反映了数组本身固有的信息。

属性名字属性解释
ndarray.shape数组维度的元组
ndarray.ndim数组维数
ndarray.size数组中的元素数量
ndarray.itemsize一个数组元素的长度(字节)
ndarray.dtype数组元素的类型

2 ndarray的形状

首先创建一些数组。

# 创建不同形状的数组
>>> a = np.array([[1,2,3],[4,5,6]])
>>> b = np.array([1,2,3,4])
>>> c = np.array([[[1,2,3],[4,5,6]],[[1,2,3],[4,5,6]]])

分别打印出形状

>>> a.shape
>>> b.shape
>>> c.shape

(2, 3)  # 二维数组
(4,)	# 一维数组
(2, 2, 3) # 三维数组

如何理解数组的形状?

二维数组:

在这里插入图片描述

三维数组:

在这里插入图片描述

3 ndarray的类型

>>> type(score.dtype)

<type 'numpy.dtype'>

dtype是numpy.dtype类型,先看看对于数组来说都有哪些类型

名称描述简写
np.bool用一个字节存储的布尔类型(True或False)‘b’
np.int8一个字节大小,-128 至 127‘i’
np.int16整数,-32768 至 32767‘i2’
np.int32整数,-2^31​ 至 2^32 -1‘i4’
np.int64整数,-2^63 至 2^63 - 1‘i8’
np.uint8无符号整数,0 至 255‘u’
np.uint16无符号整数,0 至 65535‘u2’
np.uint32无符号整数,0 至 2^32 - 1‘u4’
np.uint64无符号整数,0 至 2^64 - 1‘u8’
np.float16半精度浮点数:16位,正负号1位,指数5位,精度10位‘f2’
np.float32单精度浮点数:32位,正负号1位,指数8位,精度23位‘f4’
np.float64双精度浮点数:64位,正负号1位,指数11位,精度52位‘f8’
np.complex64复数,分别用两个32位浮点数表示实部和虚部‘c8’
np.complex128复数,分别用两个64位浮点数表示实部和虚部‘c16’
np.object_python对象‘O’
np.string_字符串‘S’
np.unicode_unicode类型‘U’

创建数组的时候指定类型

>>> a = np.array([[1, 2, 3],[4, 5, 6]], dtype=np.float32)
>>> a.dtype
dtype('float32')

>>> arr = np.array(['python', 'tensorflow', 'scikit-learn', 'numpy'], dtype = np.string_)
>>> arr
array([b'python', b'tensorflow', b'scikit-learn', b'numpy'], dtype='|S12')
  • 注意:若不指定,整数默认int64,小数默认float64

4 总结

数组的基本属性【知道】

属性名字属性解释
ndarray.shape数组维度的元组
ndarray.ndim数组维数
ndarray.size数组中的元素数量
ndarray.itemsize一个数组元素的长度(字节)
ndarray.dtype数组元素的类型

ndarray运算

问题

如果想要操作符合某一条件的数据,应该怎么做?

1 逻辑运算

# 生成10名同学,5门功课的数据
>>> score = np.random.randint(40, 100, (10, 5))

# 取出最后4名同学的成绩,用于逻辑判断
>>> test_score = score[6:, 0:5]

# 逻辑判断, 如果成绩大于60就标记为True 否则为False
>>> test_score > 60
array([[ True,  True,  True, False,  True],
       [ True,  True,  True, False,  True],
       [ True,  True, False, False,  True],
       [False,  True,  True,  True,  True]])

# BOOL赋值, 将满足条件的设置为指定的值-布尔索引
>>> test_score[test_score > 60] = 1
>>> test_score
array([[ 1,  1,  1, 52,  1],
       [ 1,  1,  1, 59,  1],
       [ 1,  1, 44, 44,  1],
       [59,  1,  1,  1,  1]])

2 通用判断函数

  • np.all()
# 判断前两名同学的成绩[0:2, :]是否全及格
>>> np.all(score[0:2, :] > 60)
False
  • np.any()
# 判断前两名同学的成绩[0:2, :]是否有大于90分的
>>> np.any(score[0:2, :] > 80)
True

3 np.where(三元运算符)

通过使用np.where能够进行更加复杂的运算

  • np.where()
# 判断前四名学生,前四门课程中,成绩中大于60的置为1,否则为0
temp = score[:4, :4]
np.where(temp > 60, 1, 0)
  • 复合逻辑需要结合np.logical_and和np.logical_or使用
# 判断前四名学生,前四门课程中,成绩中大于60且小于90的换为1,否则为0
np.where(np.logical_and(temp > 60, temp < 90), 1, 0)

# 判断前四名学生,前四门课程中,成绩中大于90或小于60的换为1,否则为0
np.where(np.logical_or(temp > 90, temp < 60), 1, 0)

4 统计运算

如果想要知道学生成绩最大的分数,或者做小分数应该怎么做?

4.1 统计指标

在数据挖掘/机器学习领域,统计指标的值也是我们分析问题的一种方式。常用的指标如下:

  • min(a, axis)
    • Return the minimum of an array or minimum along an axis.
  • max(a, axis])
    • Return the maximum of an array or maximum along an axis.
  • median(a, axis)
    • Compute the median along the specified axis.
  • mean(a, axis, dtype)
    • Compute the arithmetic mean along the specified axis.
  • std(a, axis, dtype)
    • Compute the standard deviation along the specified axis.
  • var(a, axis, dtype)
    • Compute the variance along the specified axis.

4.2 案例:学生成绩统计运算

进行统计的时候,axis 轴的取值并不一定,Numpy中不同的API轴的值都不一样,在这里,axis 0代表列, axis 1代表行去进行统计

# 接下来对于前四名学生,进行一些统计运算
# 指定列 去统计
temp = score[:4, 0:5]
print("前四名学生,各科成绩的最大分:{}".format(np.max(temp, axis=0)))
print("前四名学生,各科成绩的最小分:{}".format(np.min(temp, axis=0)))
print("前四名学生,各科成绩波动情况:{}".format(np.std(temp, axis=0)))
print("前四名学生,各科成绩的平均分:{}".format(np.mean(temp, axis=0)))

结果:

前四名学生,各科成绩的最大分:[96 97 72 98 89]
前四名学生,各科成绩的最小分:[55 57 45 76 77]
前四名学生,各科成绩波动情况:[16.25576821 14.92271758 10.40432602  8.0311892   4.32290412]
前四名学生,各科成绩的平均分:[78.5  75.75 62.5  85.   82.25]

如果需要统计出某科最高分对应的是哪个同学?

  • np.argmax(temp, axis=)
  • np.argmin(temp, axis=)
print("前四名学生,各科成绩最高分对应的学生下标:{}".format(np.argmax(temp, axis=0)))

结果:

前四名学生,各科成绩最高分对应的学生下标:[0 2 0 0 1]

5 小结

  • 逻辑运算【知道】
    • 直接进行大于,小于的判断
    • 合适之后,可以直接进行赋值
  • 通用判断函数【知道】
    • np.all()
    • np.any()
  • 统计运算【掌握】
    • np.max()
    • np.min()
    • np.median()
    • np.mean()
    • np.std()
    • np.var()
    • np.argmax(axis=) — 最大元素对应的下标
    • np.argmin(axis=) — 最小元素对应的下标
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员无羡

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值