LST数据集介绍与下载

一、LST数据集

20个LST数据产品
中国陆域及周边逐日1km全天候地表温度数据集(TRIMS LST;2000-2022)
论文A global seamless 1 km resolution daily land surface temperature dataset (2003–2020)

GLASS地表温度产品(Land Surface Temperature,简称LST)
GLASS产品集目前有二套瞬时LST产品。第一套是利用一种多算法集成方法,针对单一反演算法在大观测角度和高水汽含量情况下反演精度低的问题,将9种常见的分裂窗算法采用集成方法构建LST多算法集成反演模型。另一套AVHRR LST产品是基于一个改进型通用劈窗算法(Liu等,2019)。该算法是在通用劈窗算法的基础上增加了两个热红外通道亮温差的二次项,进而提高了原算法在高水汽含量下的反演精度。
马里兰大学GLASS产品

MODIS——NASA
TERRA为上午星,从北向南于地方时10:30左右通过赤道,AQUA为下午星,从南向北于地方时13:30左右通过赤道。主要下载的是MOD A11全球1km数据( MOD11 A1为地表温度和发射率日产品,产品己经进行了几何校正与辐射校正,投影坐标为球面曲线正弦投影,空间分辨率为1000m。
在这里插入图片描述

MODIS与Landsat获取LST数据

GEE——Modis_LST地表温度产品时间序列分析
Landsat
Landsat Land Surface Temperature线上交互
Landsat轨道查询
GEE反演landsat计算出

二、 GEE下载10mLST

GEE在2021年的时候就已经将Landsat8数据整合到C02数据集中, Landsat8数据的L2级产品的热红外波段ST_B10就直接对应着地表温度,只需简单计算即可获取摄氏度

var geometry = ee.FeatureCollection("projects/ee-wn1206/assets/beijing_urban").geometry();
 // A function that scales and masks Landsat 8 (C2) surface reflectance images.
  function prepSrL8(image) {
   
  // Bit 0 - Fill
  // Bit 1 - Dilated Cloud
  // Bit 2 - Cirrus
  // Bit 3 - Cloud
  // Bit 4 - Cloud Shadow
    // Develop masks for unwanted pixels (fill, cloud, cloud shadow).
    var qaMask = image.select('QA_PIXEL').bitwiseAnd(parseInt('11111', 2)).eq(0);
    //this is what is used ,this is cloud mask
    var saturationMask = image.select('QA_RADSAT').eq
### 使用地表温度(LST)数据估算城市热岛强度(UHII) #### 地表温度的重要性 在遥感领域,地表温度(Land Surface Temperature, LST)是研究气候变化、城市热岛效应、农业干旱评估等方面的重要指标[^1]。通过分析LST数据可以有效识别和量化城市热岛现象。 #### 数据源的选择 为了估算UHII,通常会选择高分辨率的LST数据作为输入。MODIS卫星提供了广泛覆盖的地表温度产品,适用于大范围的城市热岛研究。此外,Google Earth Engine (GEE) 平台能够方便地处理大规模时空数据,支持高效的批量下载和计算操作。 #### UHII定义计算方法 城市热岛强度(Urban Heat Island Intensity, UHII)是指城市中心区域相对于郊区背景环境之间的温差。具体来说: \[ \text{UHII} = T_{\text{urban}} - T_{\text{rural}} \] 其中 \(T_{\text{urban}}\) 表示城市内部平均地表温度;\(T_{\text{rural}}\) 则代表周边农村地区的平均地表温度。这两个参数可以通过对特定时间段内的LST图像进行统计得到。 #### 实现过程 以下是使用Python脚本结合GEE API来实现这一目标的具体步骤: ```python import ee ee.Initialize() def calculate_uhii(city_aoi, rural_buffer_distance_km=20): # 加载MODIS LST日间合成影像集合 modis_lst_day = ee.ImageCollection('MODIS/061/MOD11A1') \ .select(['LST_Day_1km']) \ .map(lambda img: img.multiply(0.02).subtract(273.15)) # 转换为摄氏度 def get_average_temperature(image_collection, aoi): mean_temp = image_collection.mean().reduceRegion( reducer=ee.Reducer.mean(), geometry=aoi, scale=1000, maxPixels=1e9 ) return mean_temp.getInfo()['LST_Day_1km'] city_temps = [] dates = [] start_date = '2020-01-01' end_date = '2020-12-31' for date in pd.date_range(start=start_date, end=end_date, freq='M'): filtered_modis = modis_lst_day.filterDate(date.strftime('%Y-%m'), (date + relativedelta(months=+1)).strftime('%Y-%m')) urban_area = city_aoi.buffer(-rural_buffer_distance_km * 1000) rural_area = city_aoi.buffer(rural_buffer_distance_km * 1000).difference(city_aoi.buffer((rural_buffer_distance_km - 5) * 1000)) t_city = get_average_temperature(filtered_modis, urban_area) t_rural = get_average_temperature(filtered_modis, rural_area) uhii_value = t_city - t_rural city_temps.append(uhii_value) dates.append(date.to_pydatetime()) df = pd.DataFrame({'date':dates,'uhii':city_temps}) return df # 定义AOI(兴趣区) shanghai_aoi = ee.Geometry.Polygon([ [[121.2841796875, 31.24603271484375], [121.2841796875, 31.44603271484375], [121.6841796875, 31.44603271484375], [121.6841796875, 31.24603271484375]] ]) df_shanghai = calculate_uhii(shanghai_aoi) print(df_shanghai.head()) ``` 此代码片段展示了如何利用GEE平台上的MODIS LST数据集以及简单的几何运算来估计给定城市的月度UHII变化趋势。注意这里仅选取了一个样本年份的数据用于说明目的,在实际应用中可以根据需求调整时间跨度和其他参数设置。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值