【时间序列分析】03. 谱密度

谱密度

谱函数和谱密度

随机变量的统计性质可以由它的分布函数或概率密度刻画,类似地,平稳序列的统计性质可以由它的谱分布函数或谱密度函数刻画。平稳序列的谱分布函数是唯一存在的,但并不是所有的平稳序列都具有谱密度函数。

谱反映了平稳序列的相关结构。谱密度是将原始序列看成许多个不同频率的余弦波的叠加时,不同频率的振幅平方大小,谱密度越高的地方,对应的频率成分的振幅越大。

设平稳序列 { X t } \{X_t\} { Xt} 有自协方差函数 { γ k } \{\gamma_k\} { γk}

如果有 [ − π ,   π ] [-\pi,\,\pi] [π,π] 上的单调不减右连续的函数 F ( λ ) F(\lambda) F(λ) ,使得
γ k = ∫ − π π e i k λ   d F ( λ )   ,      F ( − π ) = 0   ,      k ∈ Z , \gamma_k=\int_{-\pi}^\pi e^{ik\lambda}\,{\rm d}F(\lambda) \ , \ \ \ \ F(-\pi)=0\ , \ \ \ \ k\in\Z, γk=ππeikλdF(λ) ,    F(π)=0 ,    kZ,
就称 F ( λ ) F(\lambda) F(λ) { X t } \{X_t\} { Xt} { γ k } \{\gamma_k\} { γk} 的谱分布函数。

如果有 [ − π ,   π ] [-\pi,\,\pi] [π,π] 上的非负函数 f ( λ ) f(\lambda) f(λ) ,使得
γ k = ∫ − π π f ( λ ) e i k λ   d λ   ,      k ∈ Z , \gamma_k=\int_{-\pi}^\pi f(\lambda)e^{ik\lambda}\,{\rm d}\lambda \ , \ \ \ \ k\in\Z, γk=ππf(λ)eikλdλ ,    kZ,
就称 f ( λ ) f(\lambda) f(λ) { X t } \{X_t\} { Xt} { γ k } \{\gamma_k\} { γk} 的谱密度函数。

谱函数和谱密度之间具有如下的联系

如果 { X t } \{X_t\} { Xt} 有谱密度 f ( λ ) f(\lambda) f(λ) ,则 { X t } \{X_t\} { Xt} 的谱函数就是变上限的积分
F ( λ ) = ∫ − π λ f ( s ) d s . F(\lambda)=\int_{-\pi}^\lambda f(s)ds. F(λ)=πλf(s)ds.
如果 F ( λ ) F(\lambda) F(λ) 是连续函数,除去有限点外导函数存在且连续,则谱密度 f ( λ ) f(\lambda) f(λ)
f ( λ ) = { F ′ ( λ )   , 当  F ′ ( λ )  存在 , 0   , 当  F ′ ( λ )  不存在  . f(\lambda)=\left\{ \begin{array}{ll} F'(\lambda)\ , & \text{当}\ F'(\lambda)\ \text{存在} ,\\ 0\ , & \text{当}\ F'(\lambda)\ \text{不存在}\ . \end{array} \right. f(λ)={ F(λ) ,0 , F(λ) 存在, F(λ) 不存在 .

Herglotz 定理:平稳序列的谱函数是唯一存在的。

推论:平稳序列的谱密度如果存在,则在几乎处处的意义下是唯一的。

定理:实值平稳序列的谱密度是偶函数。
f ( λ ) f(\lambda) f(λ) 是实值平稳序列 { X t } \{X_t\} { Xt} 的谱密度,即证 f ( − λ ) = f ( λ ) f(-\lambda)=f(\lambda) f(λ)=f(λ) ,从而有
C o v ( X t ,   X t + k ) = 2 ∫ 0 π cos ⁡ ( k λ ) f ( λ )   d λ   ,      k = 0 , 1 , 2 , . . . {\rm Cov}(X_t,\,X_{t+k})=2\int_0^\pi\cos(k\lambda)f(\lambda)\,{\rm d}\lambda \ , \ \ \ \ k=0,1,2,... Cov(Xt,Xt+k)=20πcos(kλ)f(λ)dλ ,    k=0,1,2,...

根据谱密度的定义,可以写出 γ − k \gamma_{-k} γk 的表达式
γ − k = ∫ − π π f ( λ ) e − i k λ   d λ = t = − λ ∫ − π π f ( − t ) e i k t   d t = ∫ − π π f ( − λ ) e i k λ   d λ \gamma_{-k}=\int_{-\pi}^\pi f(\lambda)e^{-ik\lambda}\,{\rm d}\lambda\xlongequal{t=-\lambda}\int_{-\pi}^\pi f(-t)e^{ikt}\,{\rm d}t=\int_{-\pi}^\pi f(-\lambda)e^{ik\lambda}\,{\rm d}\lambda γk=ππf(λ)eikλ

  • 2
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值