【应用随机过程】07. 平稳过程

本文深入探讨平稳过程,包括严平稳与宽平稳过程的定义、自相关函数的性质,以及时间平均和各态历经性的概念。平稳过程在统计特性上保持不变,广泛应用于信号处理和时间序列分析等领域。
摘要由CSDN通过智能技术生成

第七讲 平稳过程

一、平稳过程及其相关概念

Part 1:平稳过程的定义

从通俗意义上去理解,平稳过程指的是统计特性不随时间的推移而改变的一类随机过程。随机过程的统计特性一般通过有限维分布和数字特征进行刻画。我们根据这些不变的特征,给出两种平稳过程的定义,即严平稳过程和宽平稳过程。

严平稳过程:对于随机过程 { X ( t ) ,   t ∈ T } \{X(t),\,t\in T\} { X(t),tT} ,如果对任意 k ≥ 1 k\geq1 k1 t 1 , t 2 , ⋯   , t k ∈ T t_1,t_2,\cdots,t_k\in T t1,t2,,tkT 以及 h ∈ T h\in T hT 都有
( X ( t 1 + h ) , X ( t 2 + h ) , ⋯   , X ( t k + h ) ) = d ( X ( t 1 ) , X ( t 2 ) , ⋯   , X ( t k ) )   , \big(X(t_1+h),X(t_2+h),\cdots,X(t_k+h)\big)\xlongequal{d}\big(X(t_1),X(t_2),\cdots,X(t_k)\big) \ , (X(t1+h),X(t2+h),,X(tk+h))d (X(t1),X(t2),,X(tk)) ,
则称该随机过程为严平稳过程或强平稳过程。

严平稳过程的任意有限维分布都不随时间的推移而改变。然而实际中随机过程的有限维分布往往很难确定,所以我们一般研究的平稳过程,都是在数字特征尤其是一阶矩和二阶矩中体现出的平稳性。

宽平稳过程:对于随机过程 { X ( t ) ,   t ∈ T } \{X(t),\,t\in T\} { X(t),tT} ,对任意的 t ∈ T t\in T tT ,都有 E [ X ( t ) ] 2 < ∞ {\rm E}[X(t)]^2<\infty E[X(t)]2< 。如果满足

  1. 均值函数为常数,即 μ X ( t ) ≡ μ   ,    t ∈ T \mu_X(t)\equiv\mu \ , \ \ t\in T μX(t)μ ,  tT
  2. 自相关函数仅与时间差有关,即 r X ( s ,   t ) = R X ( s − t )   ,    s ,   t ∈ T r_X(s,\,t)=R_X(s-t) \ , \ \ s,\,t\in T rX(s,t)=RX(st) ,  s,tT

则称该随机过程为宽平稳过程或弱平稳过程。

严平稳过程和宽平稳过程的关系我们只需要记住以下两条:

  1. 如果严平稳过程的二阶矩存在且有限,那么它一定是宽平稳过程,反之则不一定。
  2. 如果宽平稳过程是正态过程,那么它一定是严平稳过程。

宽平稳过程一定是二阶矩过程。以后提到的平稳过程,除非特别指明,否则都指的是宽平稳过程。

Part 2:自相关函数的性质

对于平稳过程而言,我们主要研究的数字特征就是自相关函数或自协方差函数。下面我们介绍平稳过程自相关函数或自协方差函数的性质。

{ X ( t ) ,   t ∈ T } \{X(t),\,t\in T\} { X(t),tT} 是宽平稳过程,定义自相关函数和自协方差函数为
r X ( τ ) = E ( X ( t ) X ( t + τ ) )   , C X ( τ ) = C o v ( X ( t ) , X ( t + τ ) )   , ∀ τ ∈ T   , r_X(\tau)={\rm E}(X(t)X(t+\tau)) \ , \quad C_X(\tau)={\rm Cov}(X(t),X(t+\tau)) \ , \quad \forall\tau\in T \ , rX(τ)=E(X(t)X(t+τ)) ,CX(τ)=Cov(X(t),X(t+τ)) ,τT ,
则有以下性质

  1. r X ( 0 ) ≥ 0 ,   C X ( 0 ) ≥ 0 r_X(0)\geq0,\,C_X(0)\geq0 rX(0)0,CX(0)0
  2. r X ( τ ) r_X(\tau) rX(τ) C X ( τ ) C_X(\tau) CX(τ) 均为偶函数;
  3. ∣ r X ( τ ) ∣ ≤ r X ( 0 ) ,   ∣ C X ( τ ) ∣ ≤ C X ( 0 ) |r_X(\tau)|\leq r_X(0),\,|C_X(\tau)|\leq C_X(0) rX(τ)rX(0),CX(τ)CX(0) ,即 0 0 0 点是最大值点;
  4. r X ( τ ) r_X(\tau) rX(τ) C X ( τ ) C_X(\tau) CX(τ) 均为非负定函数;

我们只证明关于自相关函数的结论。

性质 1 和性质 2 由定义式可得:
r X ( 0 ) = E [ X ( t ) ] 2 ≥ 0   . r X ( − τ ) = E ( X ( t ) X ( t − τ ) ) = t ′ = t − τ E ( X ( t ′ ) X ( t ′ + τ ) ) = r X ( τ )   . \begin{aligned} &r_X(0)={\rm E}[X(t)]^2\geq0 \ . \\ \\ &r_X(-\tau)={\rm E}(X(t)X(t-\tau))\xlongequal{t'=t-\tau}{\rm E}(X(t')X(t'+\tau))=r_X(\tau) \ . \end{aligned} rX(0)=E[X(t)]20 .rX(τ)=E(X(t)X(tτ))t=tτ E(X(t)X(t+τ))=rX(τ) .
性质 3 由柯西不等式可得:
∣ r X ( τ ) ∣ = ∣ E ( X ( t ) X ( t + τ ) ) ∣ ≤ E [ X ( t ) ] 2 E [ X ( t + τ ) ] 2 = r X ( 0 )   . \left|r_X(\tau)\right|=|{\rm E}(X(t)X(t+\tau))|\leq\sqrt{ {\rm E}[X(t)]^2{\rm E}[X(t+\tau)]^2}=r_X(0) \ . rX(τ)=E(X(t)X(t+τ))E[X(t)]2E[X(t+τ)]2 =rX(0) .
性质 4 只需证对任意的 t 1 , t 2 , ⋯   , t n ∈ T t_1,t_2,\cdots,t_n\in T t1,t2,,tnT 和任意的 a 1 , a 2 , ⋯   , a n ∈ R a_1,a_2,\cdots,a_n\in\mathbb{R} a1,a2,,anR ,有
∑ i = 1 n ∑ j = 1 n r X ( t i − t j ) a i a j ≥ 0   . \sum_{i=1}^n\sum_{j=1}^nr_X(t_i-t_j)a_ia_j\geq0 \ . i=1nj=1nr

  • 4
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值