Zero-Shot Cross-Lingual Summarization via Large Language Models
基于大型语言模型的零概率跨语言摘要
使用大型语言模型(LLMs)进行零-shot跨语言摘要的工作。探讨了如何引导LLMs执行零-shot跨语言摘要,并展示了GPT-4在这一任务中的最新性能。
A Variational Hierarchical Model for Neural Cross-Lingual Summarization
神经跨语言摘要的变分层次模型
提出了一种基于条件变分自动编码器的层次模型,用于神经跨语言摘要生成。
Unifying Cross-lingual Summarization and Machine Translation with Compression Rate
基于压缩率的跨语言摘要与机器翻译的统一
将MT任务视为一个特殊的CLS任务,其中压缩率为100%。这样,MT和CLS可以作为一个统一的任务进行训练,更有效地共享知识。为了平滑地连接MT任务和CLS任务,作者提出了一种有效的数据增强方法来生成具有不同压缩率的文档-摘要对。
Towards Unifying Multi-Lingual and Cross-Lingual Summarization
迈向统一多语与跨语摘要
将多语言摘要(MLS)和跨语言摘要(CLS)统一到一个更通用的设置中,即多对多摘要(M2MS)。具体来说,他们提出了一个名为PISCES的预训练M2MS模型。
Oversea Cross-Lingual Summarization Service in Multilanguage Pre-Trained Model through Knowledge Distillation
基于知识蒸馏的多语言预训练模型中的海外跨语言摘要服务
提出并实施了一个知识蒸馏框架,用于提升多语言预训练模型在跨语言摘要任务中的性能,解决了由于跨语言摘要数据集资源匮乏以及不同语言间复杂变化(如词序和时态)导致的低质量摘要问题。
Multi-path Based Self-adaptive Cross-lingual Summarization
基于多路径的自适应跨语言摘要
提出并实施了一种多路径基于自适应的跨语言摘要模型,处理来自不同语言的信息,并促进不同语言之间及生成任务之间的合作。
Cross-Lingual Abstractive Summarization with Limited Parallel Resources
有限并行资源下的跨语言抽象摘要
提出了一种新的多任务学习框架MCLAS,用于处理在资源有限的情况下进行跨语言摘要的任务。采取统一的解码器,并建立单语摘要和跨语言摘要之间的关系,先在在大规模单语文档-摘要并行数据集上预训练MCLAS,然后再在少量的跨语言摘要样本上进行微调,使模型能够将学到的摘要能力转移到低资源语言上。
Long-Document Cross-Lingual Summarization
长文件跨语言摘要
构建了首个长文档跨语言摘要(Long-Document Cross-Lingual Summarization, CLS)数据集“Perseus”,这个数据集包含了约94,000篇中文科学论文及其对应的英文摘要。该数据集的平均文档长度超过两千个标记,专注于处理和总结长文档。、
基于该数据集的跨语言摘要基线模型,包括流水线方法和端到端方法,并在数据集上进行了评估。