跨语言摘要CLS近期论文研究总结(三)

Zero-Shot Cross-Lingual Summarization via Large Language Models

基于大型语言模型的零概率跨语言摘要

使用大型语言模型(LLMs)进行零-shot跨语言摘要的工作。探讨了如何引导LLMs执行零-shot跨语言摘要,并展示了GPT-4在这一任务中的最新性能。

A Variational Hierarchical Model for Neural Cross-Lingual Summarization

神经跨语言摘要的变分层次模型
提出了一种基于条件变分自动编码器的层次模型,用于神经跨语言摘要生成。

Unifying Cross-lingual Summarization and Machine Translation with Compression Rate

基于压缩率的跨语言摘要与机器翻译的统一

将MT任务视为一个特殊的CLS任务,其中压缩率为100%。这样,MT和CLS可以作为一个统一的任务进行训练,更有效地共享知识。为了平滑地连接MT任务和CLS任务,作者提出了一种有效的数据增强方法来生成具有不同压缩率的文档-摘要对。

Towards Unifying Multi-Lingual and Cross-Lingual Summarization

迈向统一多语与跨语摘要

将多语言摘要(MLS)和跨语言摘要(CLS)统一到一个更通用的设置中,即多对多摘要(M2MS)。具体来说,他们提出了一个名为PISCES的预训练M2MS模型。

Oversea Cross-Lingual Summarization Service in Multilanguage Pre-Trained Model through Knowledge Distillation

基于知识蒸馏的多语言预训练模型中的海外跨语言摘要服务
提出并实施了一个知识蒸馏框架,用于提升多语言预训练模型在跨语言摘要任务中的性能,解决了由于跨语言摘要数据集资源匮乏以及不同语言间复杂变化(如词序和时态)导致的低质量摘要问题。

Multi-path Based Self-adaptive Cross-lingual Summarization

基于多路径的自适应跨语言摘要

提出并实施了一种多路径基于自适应的跨语言摘要模型,处理来自不同语言的信息,并促进不同语言之间及生成任务之间的合作。

Cross-Lingual Abstractive Summarization with Limited Parallel Resources

有限并行资源下的跨语言抽象摘要

提出了一种新的多任务学习框架MCLAS,用于处理在资源有限的情况下进行跨语言摘要的任务。采取统一的解码器,并建立单语摘要和跨语言摘要之间的关系,先在在大规模单语文档-摘要并行数据集上预训练MCLAS,然后再在少量的跨语言摘要样本上进行微调,使模型能够将学到的摘要能力转移到低资源语言上。

Long-Document Cross-Lingual Summarization

长文件跨语言摘要
构建了首个长文档跨语言摘要(Long-Document Cross-Lingual Summarization, CLS)数据集“Perseus”,这个数据集包含了约94,000篇中文科学论文及其对应的英文摘要。该数据集的平均文档长度超过两千个标记,专注于处理和总结长文档。、
基于该数据集的跨语言摘要基线模型,包括流水线方法和端到端方法,并在数据集上进行了评估。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值