2025美赛数学建模C题:奥运奖牌榜模型——思路+代码+模型

详细思路更新见文末名片

2025 MCM 问题 C: 奥运奖牌榜模型



除了观看 2024 年巴黎夏季奥运会的各项个人比赛外,粉丝们还关注每个国家的“奖牌榜”。最终结果(表 1)显示,美国获得了最多的奖牌(126 枚),中国和美国在金牌榜上并列第一(40 枚金牌)。东道国法国在金牌榜上排名第五(16 枚金牌),但在总奖牌榜上排名第四,而英国以 14 枚金牌排名第七,在总奖牌数上排名第三。

金牌 银牌 铜牌 总计
美国 40 44 42 126
中国 40 27 24 91
日本 20 12 13 45
澳大利亚 18 19 16 53
法国 16 26 22 64
荷兰 15 7 12 34
英国 14 22 29 65

表 1:巴黎奥运会(2024)最终奖牌榜——金牌排名前七的国家【1】

奖牌榜上位列前列的国家总是备受关注,但其他国家的奖牌数同样重要。例如,阿尔巴尼亚(2 枚奖牌)、佛得角、多米尼加和圣卢西亚(各 2 枚奖牌)在巴黎奥运会上赢得了各自国家的首枚奥运奖牌。多米尼加和圣卢西亚还分别赢得了金牌。超过 60 个国家至今未赢得任何奥运奖牌。

人们常常预测最终的奖牌数,但这些预测通常不是基于历史的奖牌数据,而是在即将到来的奥运会开始前,运动员阵容已经确定后进行预测(例如:https://www.ni

### 关于2025国大学生数学建模(MCM)C中的随机森林模型 #### 随机森林简介 随机森林是一种集成学习方法,它通过构建多个决策树并汇总其结果来进行分类或回归任务。每棵树都在数据的不同子集上训练,并且在节点分裂时只考虑特征的一个随机子集。这种方法不仅提高了预测准确性,还增强了模型的稳定性。 #### 应用于奥运会奖牌表预测 对于2025 MCM C——即《奥运奖牌榜模型》而言,可以利用随机森林来预测各国在未来几届夏季奥林匹克运动会中获得的金、银、铜牌数量以及总的奖牌数目[^3]。此方法能够捕捉到影响奖牌成绩的各种因素之间的复杂关系,比如运动员水平、国家体育政策支持度等。 #### 实现步骤概述 为了实现上述目标,在Python环境中可以通过`scikit-learn`库轻松调用随机森林算法: ```python from sklearn.ensemble import RandomForestRegressor import pandas as pd # 假设df是一个包含历史比数据的数据框 data = df[['feature_1', 'feature_2', ...]] # 特征列 labels = df['medal_count'] # 标签列为奖牌总数 model = RandomForestRegressor(n_estimators=100, random_state=42) # 训练模型 model.fit(data, labels) # 对新样本进行预测 predictions = model.predict(new_data) ``` 这段代码展示了如何创建一个基于随机森林的回归器实例,并对其进行拟合操作;之后就可以用来对未来事的成绩做出预估了。 #### 结果解释与可视化 完成建模后,还可以进一步探索哪些变量对最终得分贡献最大,这有助于理解不同因素间的关系及其重要性程度。此外,绘制图表可以帮助直观展示预测趋势变化情况。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值