KKT条件
全部笔记的汇总贴:最优化学习目录
KKT条件(最优解的一阶必要条件)
∇ f ( x ∗ ) + ∑ i = 1 m λ i ∇ g i ( x ∗ ) + ∑ i = 1 l μ i ∇ h i ( x ∗ ) = 0 \nabla f\left(x^{*}\right)+\sum_{i=1}^{m} \lambda_{i} \nabla g_{i}\left(x^{*}\right)+\sum_{i=1}^{l} \mu_{i} \nabla h_{i}\left(x^{*}\right)=0 ∇f(x∗)+i=1∑mλi∇gi(x∗)+i=1∑lμi∇hi(x∗)=0 λ i ⩾ 0 , i = 1 , … m \lambda_{i} \geqslant 0, \quad i=1, \ldots m λi⩾0,i=1,…m g i ( x ∗ ) ⩽ 0 , i = 1 , ⋯ m g_{i}\left(x^{*}\right) \leqslant 0, i=1, \cdots m gi(x∗)⩽0,i=1,⋯m h i ( x ∗ ) = 0 , i = 1 , ⋯ l h_{i}\left(x^{*}\right)=0, i=1, \cdots l hi(x∗)=0,i=1,⋯l λ i g i ( x ∗ ) = 0 , i = 1 , … m \lambda_{i} g_{i}\left(x^{*}\right)=0, i=1, \ldots m λigi(x∗)=0,i=1,…m
Complementary Slackness 互补松弛条件
这里要引入一个Complementary Slackness 互补松弛条件
λ
i
g
i
(
x
∗
)
=
0
,
i
=
1
,
…
m
\lambda_{i} g_{i}\left(x^{*}\right)=0, i=1, \ldots m
λigi(x∗)=0,i=1,…m
{
λ
i
>
0
⇒
g
i
(
x
⋆
)
=
0
g
i
(
x
∗
)
<
0
=
>
λ
i
=
0
\left\{\begin{array}{l}\lambda_{i}>0 \Rightarrow g_{i}\left(x^{\star}\right)=0 \\ g_{i}\left(x^{*}\right)<0=>\lambda_{i}=0\end{array}\right.
{λi>0⇒gi(x⋆)=0gi(x∗)<0=>λi=0
切锥与约束规范
为了证明KKT,这里引入几个定义
最优解的必要条件
若
x
∗
x^{*}
x∗是问题P的局部最优解
D
(
x
∗
)
∩
T
(
x
∗
)
=
ϕ
D\left(x^{*}\right) \cap T\left(x^{*}\right)=\phi
D(x∗)∩T(x∗)=ϕ
D
(
x
∗
)
=
{
d
∣
∇
f
(
x
∗
)
⊤
d
<
0
}
\left.D\left(x^{*}\right)= \{ d \mid \nabla f\left(x^{*}\right)^{\top} d<0\right \}
D(x∗)={d∣∇f(x∗)⊤d<0}
T
(
x
∗
)
=
{
α
d
∣
α
>
0
,
d
=
lim
k
→
∞
x
k
−
x
∗
∣
x
k
−
x
∗
∣
}
T\left(x^{*}\right)=\left.\{ \alpha d\right|\alpha>0, d=\lim _{k \rightarrow \infty} \frac{x_{k}-x^{*}}{\left|x_{k}-x^{*}\right| } \}
T(x∗)={αd∣α>0,d=k→∞lim∣xk−x∗∣xk−x∗}
线性可行方向集
线性无关约束规范(LICQ)
引用Farkas 引理证明KKT条件