最优化学习 KKT条件(最优解的一阶必要条件)

该博客围绕KKT条件展开,介绍其为最优解的一阶必要条件,阐述了互补松弛条件,引入切锥与约束规范等定义,探讨最优解的必要条件、线性可行方向集和线性无关约束规范,还引用Farkas引理证明KKT条件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

全部笔记的汇总贴:最优化学习目录


KKT条件(最优解的一阶必要条件)

∇ f ( x ∗ ) + ∑ i = 1 m λ i ∇ g i ( x ∗ ) + ∑ i = 1 l μ i ∇ h i ( x ∗ ) = 0 \nabla f\left(x^{*}\right)+\sum_{i=1}^{m} \lambda_{i} \nabla g_{i}\left(x^{*}\right)+\sum_{i=1}^{l} \mu_{i} \nabla h_{i}\left(x^{*}\right)=0 f(x)+i=1mλigi(x)+i=1lμihi(x)=0 λ i ⩾ 0 , i = 1 , … m \lambda_{i} \geqslant 0, \quad i=1, \ldots m λi0,i=1,m g i ( x ∗ ) ⩽ 0 , i = 1 , ⋯ m g_{i}\left(x^{*}\right) \leqslant 0, i=1, \cdots m gi(x)0,i=1,m h i ( x ∗ ) = 0 , i = 1 , ⋯ l h_{i}\left(x^{*}\right)=0, i=1, \cdots l hi(x)=0,i=1,l λ i g i ( x ∗ ) = 0 , i = 1 , … m \lambda_{i} g_{i}\left(x^{*}\right)=0, i=1, \ldots m λigi(x)=0,i=1,m

在这里插入图片描述

Complementary Slackness 互补松弛条件

这里要引入一个Complementary Slackness 互补松弛条件
λ i g i ( x ∗ ) = 0 , i = 1 , … m \lambda_{i} g_{i}\left(x^{*}\right)=0, i=1, \ldots m λigi(x)=0,i=1,m { λ i > 0 ⇒ g i ( x ⋆ ) = 0 g i ( x ∗ ) < 0 = > λ i = 0 \left\{\begin{array}{l}\lambda_{i}>0 \Rightarrow g_{i}\left(x^{\star}\right)=0 \\ g_{i}\left(x^{*}\right)<0=>\lambda_{i}=0\end{array}\right. {λi>0gi(x)=0gi(x)<0=>λi=0

切锥与约束规范

为了证明KKT,这里引入几个定义
在这里插入图片描述
在这里插入图片描述

最优解的必要条件

x ∗ x^{*} x是问题P的局部最优解
D ( x ∗ ) ∩ T ( x ∗ ) = ϕ D\left(x^{*}\right) \cap T\left(x^{*}\right)=\phi D(x)T(x)=ϕ D ( x ∗ ) = { d ∣ ∇ f ( x ∗ ) ⊤ d < 0 } \left.D\left(x^{*}\right)= \{ d \mid \nabla f\left(x^{*}\right)^{\top} d<0\right \} D(x)={df(x)d<0} T ( x ∗ ) = { α d ∣ α > 0 , d = lim ⁡ k → ∞ x k − x ∗ ∣ x k − x ∗ ∣ } T\left(x^{*}\right)=\left.\{ \alpha d\right|\alpha>0, d=\lim _{k \rightarrow \infty} \frac{x_{k}-x^{*}}{\left|x_{k}-x^{*}\right| } \} T(x)={αdα>0,d=klimxkxxkx}

在这里插入图片描述

线性可行方向集

在这里插入图片描述
在这里插入图片描述

线性无关约束规范(LICQ)

在这里插入图片描述

引用Farkas 引理证明KKT条件

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

风信子的猫Redamancy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值