Pytorch Note14 激活函数(Activation Function)

本文详细介绍了神经网络中常见的激活函数,包括Sigmoid、tanh、ReLU、Leaky ReLU、ELU和Maxout。讨论了它们的优缺点,如Sigmoid的梯度消失问题,ReLU的死亡神经元现象,以及ELU的抗干扰能力。建议在实践中尝试使用ReLU及其变体,并谨慎调整学习率。

Pytorch Note14 激活函数(Activation Function)

全部笔记的汇总贴:Pytorch Note 快乐星球

激活函数(Activation Function)

在之前,我们使用Logistics回归的时候,其中一层就是用了Sigmoid激活函数,可以看到激活函数还是占据了比较重要的地位,下面会介绍一下神经网络中常用的激活函数

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Ts4Ex8we-1623506929258)(C:\Users\86137\AppData\Roaming\Typora\typora-user-images\image-20210612212458420.png)]

Sigmoid

Sigmoid 非线性激活函数的数学表达式是 σ ( x ) = 1 1 + e − x \sigma(x) = \frac{1}{1 + e^{-x}}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

风信子的猫Redamancy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值